
© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Business Objects:
Re-Engineering for Re-Use

Chris Partridge

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
First Edition published 1996 by Butterworth-Heinemann.

Second Edition published 2005 by The BORO Centre.
Second Edition printed and bound by Lodge Printers Ltd., Huntingdon.

© Copyright Chris Partridge 1996 & 2005
All rights reserved.

This document contains proprietary information of the author. It is his exclusive
property. It may not be reproduced or transmitted, in whole or in part, without a
written agreement from the author. No patent or other license is granted to this
information.

Information in this document is subject to change without notice. Information
concerning products is provided without warranty or representation of any kind,
and the author will not be liable for any damage resulting from the use of such
information.

The author, Chris Partridge, can be contacted at:
chris.partridge@BOROCentre.com

The right of Chris Partridge to be identified as author of this work has been
asserted in accordance with the Copyright Designs and Patents Act 1988 (UK).

Trademarks/registered trademarks

REV-ENG™ and BORO Methodology™ are registered trademarks of The
BORO Centre Ltd.

All other trademarks referred to are acknowledged to be the property of their
respective owners.

Figures produced by Nathaniel Sombu

First Edition ISBN 0-75-06208-2 X
Second Edition ISBN x-xx-xxxxxx-x

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
Contents iii

Contents

Acknowledgements ix

Preface xiii

Prologue xxiii

Part One
Our Strategy for Re-Engineering Entities into Objects 1

Chapter 1 What and How We Re-Engineer 3
1 Introduction 4

2 What do we re-engineer? 4

3 How do we re-engineer? With thought experiments 14

4 The benefits re-engineering brings 17

5 Re-engineering entities into objects 22

Chapter 2 Focusing on the Things in the Business 23
1 Introduction 24

2 Focusing the re-engineering on things in the business 24

3 Problems identifying ‘things in the business’ 25

4 Ignoring ‘things in the business’ 27

5 What types of things (in the business) do we re-engineer? 31

6 Our starting point—the entity paradigm 34

7 Arriving at an object semantics for ‘things in the business’ 35

8 Re-engineering the ‘things in the business’ 36

9 The next part 36

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
iv Contents

Part Two
Our Starting Point—The Entity Paradigm 37

Chapter 3 What Is the Entity Paradigm? 39
1 Introduction 40

2 The entity paradigm’s fundamental particles 40

3 The entity framework and its (re-)use of patterns 43

4 The entity paradigm and the file-record paradigm 45

5 Mapping entities and attributes onto files and records 46

6 The substance paradigm’s secondary hierarchy 50

7 Simplifying the substance paradigm’s treatment of relationships 56

8 Our current way of seeing stored information 61

9 The next chapter 62

Chapter 4 The Substance Paradigm’s Semantics 63
1 Introduction 64

2 The semantics of the fundamental substance and attribute particles 64

3 Changes—a key type of thing 66

4 Generalising re-usable substance and attribute patterns 72

5 Our current way of seeing 80

6 The four key types of things 82

7 What’s next 83

Part Three
Shifting Towards Objects—The Logical Paradigm 85

Chapter 5 The Emergence of the Logical Paradigm 87
1 Introduction 88

2 Origins of the logical paradigm 88

3 Shifting from substance to extension 91

4 Re-engineering primary substance 95

5 Re-engineering secondary substance 100

6 Re-engineering secondary attributes 101

7 Re-engineering relational attributes 102

8 Simplifying and generalising the information framework 107

9 Summary 109

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
Contents v

Chapter 6 The Logical Paradigm’s Framework 111
1 Introduction 112

2 A sense framework for logical objects 112

3 An environment that encourages compacting 122

4 The problem with logical changes 127

5 The four key types of things 130

6 A new, conceptually more accurate, logical way of seeing things 131

7 Summary 133

Part Four
Shifting to the Object Paradigm 135

Chapter 7 Physical Bodies as Four-Dimensional Objects 137
1 Introduction 138

2 The logical semantics for physical bodies 138

3 The shift to object semantics 143

4 Physical stuff objects 149

5 Classes of four-dimensional objects 151

6 Tuples of four-dimensional objects 153

7 A new way of seeing bodies—a key type of thing 153

8 Summary 154

Chapter 8 Changes as Three-Dimensional Objects 155
1 Introduction 156

2 States as physical body objects 156

3 Events – a new kind of physical object 169

4 The time-based ‘consciousness’ of information systems 179

5 A new way of seeing changes—a key type of thing 181

6 What’s next 182

Part Five
Constructing Signs for Business Objects 183

Chapter 9 Constructing Signs for Business Objects 185
1 Introduction 186

2 Constructing signs for individual objects 187

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
vi Contents

3 Constructing signs for classes of objects 189

4 Constructing signs for tuples 206

5 Constructing signs for whole–part tuples 210

6 Constructing signs for dynamic objects 214

7 Signs as objects—modelling the model 216

8 What’s next 217

Chapter 10 Constructing Signs for Business Objects’ Patterns 219
1 Introduction 220

2 Patterns for the connections between extensions 220

3 State hierarchy patterns 236

4 Time ordered temporal patterns 239

5 Cardinality patterns for tuples classes 243

6 A pattern for compacting classes 248

7 Where we are 250

Part Six
Applying Business Objects 251

Chapter 11 The REV-ENG: An Approach to Applying Business Objects 253
1 Introduction 254

2 The REV-ENG approach 254

3 The worked examples 255

4 A systematic approach to re-engineering 256

5 A framework for the model 260

6 Generalisation and compacting 264

7 What’s next 266

Chapter 12 Re-Engineering Country’s Entity Format 267
1 Introduction 268

2 The systematic re-engineering process 268

3 The context for re-engineering 269

4 Re-engineering country entity type sign 271

5 Re-engineering attribute type signs 277

6 Basic elements of the re-engineering completed 291

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
Contents vii

Chapter 13 Generalising Country’s Re-Used Patterns 293
1 Introduction 294

2 Generalising re-used patterns 294

3 First stage of the re-engineering completed 297

Chapter 14 Re-Engineering Our Conceptual Patterns for Country 299
1 Introduction 300

2 Finding conceptual patterns 301

3 Character strings patterns 303

4 Nested countries pattern 308

5 More accurate nested countries patterns 312

6 Current countries 316

7 Summary 317

Chapter 15 Re-Engineering Region 319
1 Introduction 320

2 Re-engineering the region entity formats of the existing system 320

3 Re-engineering our conceptual patterns for region 332

4 Summary 339

Chapter 16 Re-Engineering Bank Address 341
1 Introduction 342

2 Familiarising ourselves with bank address entity formats 342

3 Re-Engineering bank 343

4 Re-Engineering address 345

5 Nested address lines 349

6 Address joining events 354

7 Generalising name 354

8 An aspect of a pattern 356

9 Summary 357

Chapter 17 Re-Engineering Time 359
1 Introduction 360

2 Re-engineering an existing system’s bank holiday entity format 360

3 Re-engineering day 361

4 Re-engineering bank holiday 365

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
viii Contents

5 Re-engineering an existing system’s weekend entity formats 367

6 Re-engineering our conceptual patterns for bank holiday and weekend 370

7 The object model for temporal patterns 373

8 Summary 373

Chapter 18 Starting a Re-Engineering Project 375
1 Introduction 376

2 Take a re-engineering approach 376

3 Establish priorities for the construction of fruitful, general, and so re-usable patterns 377

4 Taking care to manage large projects in a generalisation-friendly way 385

5 Produce a validated understanding of the business 392

6 Object model the migration of business patterns 393

7 Summary 396

Epilogue 397
1 Introduction 398

2 The accounting paradigm’s debit and credit pattern 399

3 Accounting’s ledger hierarchy 409

4 Developing a new object-oriented accounting paradigm 410

5 Industrialising information 411

6 21st century information industries 413

Bibliography 415

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Acknowledgements
Second Edition

There are a number of people who have helped to both keep the interest alive in the
approach described in the book and develop it further. First in temporal order is Nicola
Guarino and the Laboratory for Applied Ontology at CNR in Padova - now situated in
Trento (www.loa-cnr.it) where I spent a couple of years continuing my research into
ontology. Barry Smith (Buffalo Center for Ontological Research at Buffalo University and
Institute for Formal Ontology and Medical Information Science at Saarland University)
has freely given advice and encouragement over the years. Then the team at Brunel
University who worked on legacy system re-engineering at the Fluidity research centre
and its SITE project - in particular Mark Lycett, but also Sergio de Cesare and Aseem
Daga and Dirk Siebert. Finally the team at 42 Objects Ltd. (www.42Objects.com), John
Allen (for his commitment to using the methodology commercially), Barie Brown, Rob
Payne, Phil Lewis and Jeremy Wood.

I would also like to thank Kyoko Hayashi for her work in designing this second edition for
a re-printing.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Acknowledgements
First Edition

I owe an intellectual debt to Willard van Orman Quine and John Edwards; without their
influence I would not have been able to ‘see’ the world of business objects described in
this book. Quine has had a big influence on my way of thinking since I studied him at
university, though I had no conception then that his ideas could be of any commercial
use. I recently found this passage in Quine’s essay, Applications of Modern Logic,
(1960) which indicates he appreciated their commercial potential;

In the programming of problems for genuine machines [computers] there is bound to be
vast scope for the application of logical techniques . . . For programming demands utter
explicitness and formality in the analysis of concepts; furthermore it thrives on concep-
tual economy; and it rewards novel lines of analysis, with never a backward glance at tra-
ditional lines of thought. It is a remarkable fact that programming provides a strictly
monetary motive for very much the sort of rigour, imagination, and conceptual economy
that have hitherto been cultivated by theoretical logicians for purely philosophical or
aethestic reasons. The extremes of abstract theory and practical application are seen con-
verging here.

I first met John Edwards in 1987 (at the suggestion of James Odell). The presentations
of his Ptech™ method and our many discussions afterwards acted as a catalyst for my
thoughts on objects. He helped me realise that information engineers had not yet come
up with a suitable paradigm for the way we see things, and that non-computing work on
information, such as Quine’s, had a lot to contribute in this area. He gave me the intel-
lectual push I needed to recognise that the ideas of Quine and other (apparently non-
computing) thinkers could be applied fruitfully to the business modelling stage of build-
ing information systems.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
I am also indebted to a number of researchers whose work helped me to understand
more about business objects. In particular, to Bill Kent and John F. Sowa for highlighting
the important modelling issues. Descriptions of their work are contained in the books
mentioned in the bibliography at the back of this book.

The approach described in the book has evolved over a number of years and contribu-
tions have been made by a number of people. I would like to mention the following peo-
ple who contributed in various ways in the critical early stages; Zarna Bannerjee, Julian
Bennett, Mike Briggs, Mark Bullock, Gary Constable, Cathy Hansford, Alec Hoffman,
Cormac Kelly, Mei Liu, Ian Macleod, Victor Peters, Kay Preddy, Neil Prior, Tracy Riddle,
Paul Sheldrick, Mark Slater, Kevin Slaughter, Dave Thomas, Sue Wilcock and Anne
Williams. In addition a number of people gave indispensable support to the projects that
helped to develop the approach. These included the late Trevor Ball, David Betts, Peter
Gellatly and, particularly, Brian Finlayson.

Several people have helped in the writing of this book; it is much better as a result of
their constructive comments and criticisms. I am particularly grateful to Julian Bennett,
Sue Buzzacott, Peter Gellatly, Cecily Partridge and Mark Slater, who have reviewed a
number of versions of it. I would also like to thank Steve Chambers, Richard Meakin and
Francis Travis who looked at sections of the book. I am greatly indebted to Nathaniel
Sombu for his comments on and patient, painstaking production of the figures in the
book..

I also think it is worth mentioning that without my word-processing software (Microsoft’s
Word for Windows) and Nathaniel’s graphics software (Corel’s CorelDRAW) I would
have found this book impossible to produce.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Preface
Second Edition

The first edition of Business Objects went out of print in 1998, a year or so after it was
published. Since then I have received a steady stream of requests for copies. I have
met this to some extent through the provision of electronic copies - but this has not been
wholly satisfactory. Hence my decision to produce a second print edition.

This decision raised The question of what needed to be revised. After some delibera-
tion, I realised firstly that the content of the book still stands and secondly that to incor-
porate the new work would result in such a change in structure, that it would become
effectively a new book. So I decided that, apart from typographical errors, there should
be no changes.

When writing the book in 1994-5, I listened to advice that using the ‘O’ word - ontology -
would put off many business readers, who were a key target audience. Accordingly
instead of talking about ‘ontological paradigms’ or ‘ontologies’, I used the less conten-
tious term ‘paradigm’. The world has moved on since then, and the term ‘ontology’ is not
seen as inaccessible as it did then. One important reason for this is that Computer Sci-
ence has started using the term - and the business community is becoming aware and
interested in this. Hence, I considered inserting (in many cases, re-inserting) the ‘O’
word into the original text.

However, the implicit use of ontology in the book is based upon its long established use
in philosophy (“the set of things whose existence is acknowledged by a particular theory
or system of thought” - E. J. Lowe, The Oxford Companion to Philosophy). Computer
Science’s use of the term (“the formal specification of a conceptualisation”) is, in impor-
tant ways, different from this.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xiv Preface

To avoid confusion, I decided not to explicitly introduce the term in this edition. However,
I believe that the philosophical sense is going to acquire more importance over the next
decade. As well as the work I am doing, there are a number of other researchers doing
work taking account of the philosophical tradition (for example, Barry Smith and Nicola
Guarino). I believe that this work will help to make the philosophical notion of an ontol-
ogy more generally known and understood.

Substantial progress has been made since the publication of the book. I have set up two
organisations to handle the two aspects of the work: the BORO Program (www.BORO-
Program.org) to deal with research and the BORO Centre (www.BOROCentre.com) to
handle consultancy and training.

Under the BORO Program banner, I spent two fruitful years (2000-2002) at CNR in
Padova at the Laboratory for Applied Ontology (www.loa-cnr.it) continuing my research
into ontology. On returning to England, I have been continuing my research into ontol-
ogy and legacy system re-engineering with the Fluidity research centre at Brunel Uni-
versity, initially on the SITE project. Some of this BORO research has been published in
papers - copies of which are available from the BORO Program website. I plan to pub-
lish the rest, initially as papers and then subsequently as a book.

Under the BORO Centre banner, the most important development is the work being
done in collaboration with Forty Two Objects Ltd. (www.42Objects.com). They are a
venture capital company (backed by 3i) that have based the development of their serv-
ice oriented business applications upon an ontology developed using the methodology
described in this book.

The methodology described in the book is referred to as the REV-ENG Methodology. In
the work done with the BORO Centre, to mark its evolution into something more power-
ful, it has been re-named the BORO Methodology.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Preface
First Edition

 Introduction

The aim of this book is to show you how to use business objects to re-engineer your
existing information systems into models—and so systems—that are not only function-
ally richer but also structurally much simpler. It is a practical guide to re-engineering
your systems; when you finish reading it, you will be ready to start. (Business objects
can also help you to re-engineer the underlying business that is processed by these
systems; we discuss the implications of this in the Epilogue.)

 Background

The approach to business objects described in this book was sparked off by a need and
desire to build systems more effectively. In many ways, it was a lucky accident. In 1985–
86, after a number of years away from the sharp end of systems building, I became
involved in the development of a management information system. This used the latest
version of a traditional development methodology. I expected it to be a significant
improvement upon the ones I had used some time before. However, the ‘improvements’
seemed to have made the methodology more cumbersome and bureaucratic, adding
layers of complexity rather than understanding. I soon found that this was a general
trend; other established methodologies were also becoming more unwieldy.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xvi

It seemed to me that there must be a better way. I could not believe that someone
somewhere had not developed something better. So a group of us began looking. We
soon discovered object-orientation (O-O) and started finding out all we could about it.
Though most people were using it for programming, we quickly realised that it had a lot
to offer at the analysis and, more interestingly, the business modelling stages.

Then, as luck would have it, in 1987 I became involved in a project to re-develop a large
investment management system. After much discussion, the controlling committee
decided that we would re-develop the system with a small team using these new and
relatively untried O-O techniques. We believed—rightly so, as it turned out—that they
would enable us to get high levels of re-use, reducing the effort (and therefore the cost)
needed to re-develop the system.

There was one decision that shaped our whole approach. We decided to start by re-
engineering the existing system into an O-O business model. This was a markedly dif-
ferent approach from almost every other O-O project at the time; they mostly used O-O
to design and code systems. Two requirements motivated our approach:

• First, we needed to document the existing system.
• Second, we felt that we could salvage a substantial amount of the time and

money invested in the existing system. We believed that we could capture the
understanding of the business embedded in the system and re-use it in the new
system.

 The approach

Our approach, as with any new approach, evolved and changed. However, it was clear
to us from early on that we had stumbled on something very different from traditional
information modelling and that it had enormous potential.

The two stages

We soon found that modelling the existing system was not a straightforward case of
building an O-O model, but that it fell into two stages:

• Reverse engineering, and
• Forward engineering.

In the first stage, we translated the existing system’s business entities into business
objects. In most cases, this involved translating the system’s computer code straight
into a business model. This reversal of the normal system building process is often
called reverse engineering. (Strictly speaking, what we were doing was not ‘reverse
engineering’ as we were not re-building the—implicit—entity model from which the sys-
tem was built.) The ‘reverse-engineering’ approach met our two original requirements. It
not only documented the existing system but salvaged some of the investment made in
it for re-use in the new system.

In the second stage, the process of modelling with business objects naturally led us into
re-engineering our more sophisticated conceptual patterns for the business. To contrast

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
 xvii

this with reverse engineering, we called this stage forward engineering. We called the
two stages together, re-engineering.

When forward engineering, we found that we naturally identified inaccuracies and artifi-
cial constraints in the way the existing system reflected the business. Typically, these
were because of the simplified view of the business that entities force on modellers
rather than any errors in modelling. Business objects’ superior powers encouraged us to
translate our unsimplified conceptual patterns—without the inaccuracies and con-
straints—into the model. The result was more general and so more re-usable business
objects.

The benefits

This had two big benefits. First, we found that many of the business objects we con-
structed when re-engineering one part of the system were sufficiently general to be (re-
)used many times in other parts. This meant that each business object was re-used to
do jobs originally done by a number of entities (or attributes). This had a remarkable
effect; as the scope of the re-engineering grew, the model became much simpler with-
out losing any power. We called this process compacting. We monitored the compact-
ing, using rough and ready measures, and found the business model used substantially
fewer objects than the computer system had entities and attributes.

Second, it was plain that the business objects were general enough to be (re-)used,
with no extra effort, to do things that the current system could not. They had become not
only simpler, but functionally richer.

It is often claimed that O-O is able to reflect the business more directly. We discovered
early on that not only is this true but, when we modelled the business more accurately,
the objects we constructed tended to be more general and so more re-usable. This
made the model even simpler and more compact.

The re-engineering also had a profound effect on the way we saw the business. As we
became familiar with the object-view of the business, the old entity-view began to seem
hopelessly inaccurate. In many cases, we wondered how we had managed to use the
old entities for so long. This was just one indication among many that our business par-
adigms were changing radically and that we were developing a more accurate vision of
the business.

The REV-ENG™ approach

The original modelling team nick-named the approach REV-ENG—a shortening of
REVerse-ENGineering, our name for the first part of the process. This name was used
for a number of years. When the BORO Centre was set up, the name was changed to
the BORO Methodology.

Over a number of projects, we systematised the approach, streamlining the process of
re-engineering. Over time, we have added further refinements and enhancements to
make it even more effective. Under this new approach, a number of the old system

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xviii

building rules no longer seemed to apply. For instance, with a small team it would seem
sensible to restrict the scope and, in particular, avoid difficult requirements. However,
our small team found that seeking out and modelling difficult cases often made things
easier. Modelling these produced business objects that both made the model simpler
and had much more potential for re-use.

The budget-holders and users benefited from the approach as well. The budget holders
were happy because systems were cheaper to build. This was mainly because the
models were much simpler than their entity counterparts. But it also helped that the sys-
tems people using the models were less likely to misunderstand the business.

The users were happy because they got functionally much richer systems—ones that
even included some of their most difficult requirements. This would not have been cost-
effective with an entity oriented approach. They were particularly happy because the
systems were not only functionally richer than their existing systems, but also all the
others they had looked at.

Furthermore, as the users became more familiar with their systems, something remark-
able begins to happen. The systems seem to have captured the essence of the busi-
ness. We realised this when we found them being used to handle areas that had not
been envisaged when we built the business model. For instance, on one project the
users found that their re-engineered securities back-office system could already handle
new financial instruments and situations that no-one had thought of when the system
was built.

 What are business objects?

By now you are probably asking yourself, what business objects are and how they are
used to build models. Business objects are different, very different. Most of you will
need to work your way through the first half of the book to get a genuine understanding.
However, it helps to start off with some idea (even a vague one) of what they are, so I
will try to give you that now.

Business objects are a new way of seeing things. Most people (although they often
don’t realise it) currently see things as entities and attributes. They see individual things,
such as an individual warehouse or customer, as entities. They group these individual
entities into types—for example, warehouses and customers in general—called entity
types. Both entities and entity types have attributes—also sometimes called properties
or qualities. For instance, warehouses in general have the attribute of size, and an indi-
vidual warehouse may have the size attribute, small. In addition, things change—typi-
cally by changing attributes. For example, someone may build an extension on an
individual small warehouse, making its size attribute change from small to large.

Currently, when we business model, we construct what we assume is a description of
the business. What we are actually doing is describing the business entities we see.
This is often called our business paradigm. We then embed these entities deep in our
computer systems.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
 xix

When we shift to an object way of seeing, everything becomes an object. All the ‘things’
we used to see as entities or entity types, along with their attributes, are now seen as
objects. Even changes of attribute are objects. As you read through the book, you will
begin to appreciate the implications of this. But for the moment, just think of business
objects as a very general type of thing.

Business objects’ new way of seeing leads to a very different approach to modelling the
business. Instead of just describing our business paradigm, we actively revise it. We
transform its entities into business objects. This is a revisionary rather than a descriptive
approach—what is sometimes called business re-engineering. The re-engineering
transforms the way we see things so that we end up with a fundamentally new, radically
different and better vision of the business. This gives us a new, structurally simpler and
more powerful business paradigm, and so computer systems.

 Explaining business objects

As this brief outline makes clear, business objects need some explaining. We did not
have to think too hard about this during our first few projects. The team wanted to tell
other people what we were doing, but tight deadlines meant we could not spare the
time. It was a number of years before we actually sat down and properly talked about
business objects with people outside the team. Only then did we realise that people
found it very difficult to get their heads around what they are.

We had, until then, been documenting the approach for ourselves as a method or pro-
cedure. We explained what we were doing, not why. We soon found that this was, unfor-
tunately, not much use to the people trying to understand what business objects are.
Someone needed to do something. So I decided to work out how to help people under-
stand.

I started off with the assumption that this subject would be well covered; after all it is
important. I soon found that it was not. For instance, I could not find any computing
books that explained what business objects are. When I looked outside computing, I
had more success. There were a number of useful books covering different relevant
areas, but nothing that directly addressed re-engineering with business objects.

I set myself the task of co-ordinating what I had found into a single, reasonably coher-
ent, framework. As I began doing this, I discovered that many aspects of business
objects were really much more fundamental than we had suspected. I found that I
needed to do a substantial amount of analysis of the nature and history of information,
particularly computer information, to develop a reasonable understanding of what was
going on. It is unfortunate that this topic is not well covered in works on business model-
ling. I hope that future work in this area will continue to develop the start made here in
this book.

Once I had a reasonably clear picture in my mind, I realised that the best way for people
to understand business objects was to focus on how they were re-engineered from
business entities. From this perspective, people could see the business object para-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xx

digm (the conceptual framework surrounding business objects) as a natural response to
the problems inherent in business entities.

Object-orientation is new and different, so mastering it involves acquiring new knowl-
edge and new skills. IT managers have found that when their programmers move from
traditional to O-O programming, they need a large amount of training and hand-holding.
The move from traditional to business object modelling is much more fundamental. So it
will be no surprise to hear that you need to go through some substantial re-learning to
get to grips with the new ideas. That is the bad news, the good news is that once you
understand them, the ideas, like all good ideas, are simple. This does not mean you will
find them easy to pick up—after all the whole point is that they are new and radically dif-
ferent. But it does mean that, once you are familiar with them, you will find them easy to
apply.

Understanding these fundamentally new ideas

Developing these new ideas to the stage that they are at now took me and the rest of
the team many years of hard work. A large part of the task was demolishing our old
ideas to clear the decks for the new ones. These enable us to take a radically different
view of the business—to see it in terms of business entities rather than business
objects.

Although you will have the benefit of following in our footsteps, seeing things as busi-
ness objects may turn out to be a bigger task than you now envisage. When you start
reading the book, you will realise that the only way for you to learn how to see such dif-
ferent things is to re-build the way you see from the foundations up.

Initially, I found it odd to be dealing with such fundamentally new ideas about informa-
tion when working within information technology. All my training (in computing) had led
me to expect the tasks to get more technical and detailed not less—more about compu-
ter systems not less. When I became used to dealing with new general ideas, I found it
refreshing, and it made my job more, not less, enjoyable. I hope you all have the same
experience.

 Brief overview of the contents of the book

By now you will be getting an impression that business objects are very different from
traditional business entities. Most of you will begin to realise that you need some help
developing an authentic understanding of what business objects are. And that without
this understanding, you have little or no chance of starting to acquire the skills needed
to re-engineer business entities into objects.

This book gives you the help you need. Its first half helps you understand what business
objects are and how to model them. Its second half shows you how to re-engineer busi-
ness entities into business objects. When you finish these two halves, you will have
acquired the skills needed to re-engineer the entity oriented business paradigms
embedded in your existing systems.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
 xxi

Understanding business objects

The first half of the book is divided into the following five parts.
• Part One - Our Strategy for Re-Engineering Entities into Objects
• Part Two - Our Starting Point—The Entity Paradigm
• Part Three - Shifting Towards Objects—The Logical Paradigm
• Part Four - Shifting to the Object Paradigm
• Part Five - Constructing Signs for Business Objects

Re-engineering the entity paradigm into the object paradigm is not a straightforward
task. So, in Part One we define our strategy. We examine the approach we will take,
looking at what and how we will re-engineer (in particular, the key types of things we
need to re-engineer).

In Part Two we clarify where we are now. We look at the nature of the entity paradigm,
seeing why it is a simplified version of another more sophisticated paradigm, called the
substance paradigm. We also examine both paradigms potential for re-use.

We then re-engineer the more sophisticated substance paradigm into the object para-
digm. Because this involves a considerable mental effort, it is easier to digest in two
chunks. So, in Part Three, we re-engineer to the logical paradigm, a kind of halfway
house. Then, in Part Four, we re-engineer to the object paradigm. At each stage, we
examine the problems that prompt the re-engineering and how the new paradigm
resolves them. We also examine how the re-engineering increases the potential for re-
use.

The re-engineering enables us to see business objects and so see the business in a
new way. Part Five shows us how to describe what we see and how to construct the
signs in a model that map directly to these business objects.

As you read through the first half of the book, you will be re-engineering your current
entity oriented way of seeing the business into a very different object-oriented way.
When you have finished, you will understand what business objects are and how to
model them.

Applying business objects

The second half of the book (Part Six) shows you how to re-engineer the business enti-
ties embedded in your current systems into re-usable business objects. It uses worked
examples to give you a feel for how this works. These have been selected, not just to
illustrate how to re-engineer, but also to provide you with objects that you can re-use in
future re-engineerings. As the examples contain business entities that can be found in
most business systems, you will be able to (re-)use their re-engineered business
objects in your projects.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxii

 Reading the book

This book has been structured to help you build an understanding of the new object-ori-
ented way of seeing things; the later chapters increase the understanding created by
the earlier chapters. You should try and work your way from the beginning right through
to the end. Those of you who are familiar with topics covered in a section may choose to
skip it. But you should be careful. If you miss an earlier point, you may find later points
difficult to understand.

Explaining concepts

I thought it sensible to assume that some of you would be unfamiliar with the general
(apparently non-computing) ideas; so, I have been careful to explain them. Because the
objective of the book is to help you understand business objects, I have kept, as far as
possible, the explanation of the ideas simple.

I hope those of you who are familiar with the ideas will bear with me while I do this
explaining. I also hope you will recognise that where I have simplified explanations of
some complex subjects, this is appropriate given the overall objective.

Finding out more about the ideas

None of the individual ideas presented here are original. However the way in which they
have been brought together and applied is sometimes novel. I found that one of the
most enjoyable aspects of researching this book was finding that the new ideas not only
explained to me my experience of the workings of business objects but fitted into a
coherent whole.

I hope you will have a similar experience. This may inspire you to find out more about
the topics covered in the book. I have compiled a bibliography (which is at the end of the
book) that will tell you where to start looking.

Comments, suggestions and/or criticisms

This book is, in many ways, a report of work in progress. I know that there are some
parts of it that, with even more work, I could improve. I am also sure that other people
have useful ideas to contribute. For this reason, I would genuinely appreciate any com-
ments, suggestions and/or criticisms. You can send them to me directly by electronic
mail (mail@ChrisPartridge.com).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Prologue
Using Objects to Reflect the

Business Accurately

1 A core issue for business objects

2 Why we need business objects’ revisionary approach

3 What do we re-engineer—paradigms

4 What are thebenefits of re-engineering business paradigms?

5 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxiv

1 A core issue for business objects
Underlying the approach taken in this book is a core issue for objects and business
modelling—how can we accurately reflect the business in a model and thus in a compu-
ter system as well? This “Prologue” provides a context to the way in which we aim to
explore and resolve this issue. It outlines our approach and will assist you as you work
your way through the book.

1.1 O-O’s original claim

In the late 1980s, object-oriented (O-O) system building became popular. At that time,
one of the common claims of the experts was that the objects in their models directly
reflected reality. For instance, Ivar Jacobson (in Object Oriented Software Engineering,
Addison Wesley, 1994) wrote:

A model which is designed using an object-oriented technology is often easier to under-
stand, as it can be directly related to reality . . . Since objects from reality are directly
mapped into objects in the model, the semantic gap is minimised.

Peter Coad and Ed Yourdin (in Object-Oriented Analysis, Yourdin Press, 1991) gave the
same message:

OOA directly maps problem domain and system responsibility directly into a model.
Instead of an indirect mapping . . . the mapping is direct, from the problem domain to the
model.

It was then generally accepted that the objects in O-O models map directly onto objects
in the business. This appeared to neatly resolve the core reflection issue that direct
mapping would ensure the business is reflected accurately.

1.2 Questioning the original claim

More recently, this direct mapping claim has been questioned, at least for the objects in
object-oriented programming languages (OOPL). As people gain more experience with
these languages, they realise that even though its objects may be better at reflecting
reality, they do not do so directly. For example, Steve Cook and John Daniels (in an arti-
cle entitled “Object-Oriented Methods and the Great Object Myth”) wrote:

Many authors . . . propose, as though it were obviously the case, that the real world con-
sists of encapsulated resources and predefined access procedures. So we find it stated that
a real aircraft has take-off and fly operations, a real cup provides a drink operation, and so
on.

This view of the world—which we shall call the object myth—is nonsense. If you drink a
cup of tea, you do not invoke the drink operation on the cup anymore than the cup
invokes the drink operation on your lips, or, indeed, anything invokes an operation on
anything else.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
 xxv

Clearly, the OOPL (and the analysis and design methods based upon them) that lead to
things such as cup objects that invoke drink operations do not directly reflect reality.
However, this does not mean that the experts’ original insight was misguided. We can
still use objects to help us reflect reality directly. To do this, the whole approach to the
issue must be changed. We need to examine what objects in the business are instead
of dabbling with the ‘objects’ in models and programming languages.

1.3 Overturning a business object myth

A popular misconception has bedevilled the understanding of what objects in the busi-
ness are. It has been assumed, even by the experts, that people tend to see the world
in terms of objects. For example, Ivar Jacobson wrote:

People regard their environment in terms of objects. Therefore it is simple to think in the
same way when it comes to designing a model.

This is profoundly wrong. It is a myth that people see or think in terms of objects. This
myth has seriously hindered the development of business objects.

People naturally see the world in terms of attributes belonging to entities (though they
might not call them that). When most people see a red car, they think they see a car
with the property (attribute) of redness. They are not seeing objects because neither the
car nor its red attribute are objects. We examine what they do see in more detail in Part
Two.

If we want to persuade people that objects are easy to use, then it might seem a good
idea to suggest that O-O is based on the way people see the world. If we want our sys-
tem building point to be successful, then it is a terrible idea. It leads us in the completely
wrong direction. It stops us from recognising that we need to shift from our current entity
(and attribute) way of seeing things to an object way.

1.4 The nature of business modelling

A fundamental reason for these misconceptions about what people see has not been
clearly examined. In terms of the traditional stages of system building, we examine the
business at the initial ‘business modelling’ stage (shown in Figure P.1). This is the stage
at which we should map business objects directly into a model. This is where we should
shift to an object way of seeing the business.

The misconceptions persist because system builders typically think of the business
modelling stage in the same terms as the other stages in system building rather than
thinking of business modelling in its own terms.

Figure P.1 shows that this involves looking outward at the business rather than, as the
other stages do, looking inwards at the final system. We also need to recognise that:

• Business models explain what the business does, and
• System models explain how the system will operate.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxvi

In other words, the business model works at an understanding level and the system
model at an operational level. This is reflected in their objectives. Business modelling’s
objective is, or should be, to capture an understanding of the business. The later stages
use this understanding, but their objectives are aligned with the successful operation of
the implemented system. As we work through the book, we shall see how important
making the distinction between understanding and operation is for business modelling.

Figure P.1: I
Traditional stages
of system develop-
ment

2 Why we need business objects’ revisionary approach

If business objects change the way we see things, then it seems reasonable to ask why
we should go through with this change. Because it involves a substantial upheaval,
there should be a pretty good reason to justify it.

2.1 Why entities and attributes are problematic

To appreciate the fundamental reason for a revisionary approach to business objects,
we need to understand why entities and attributes are not suited to computer technol-
ogy. This involves understanding why they developed in the first place.

The entity way of seeing the world (the entity paradigm) is practically prehistoric. It is
based on the substance paradigm. This was first formalised by the Ancient Greek Aris-
totle in the 4th century BC (in other words, over two thousand years ago). We will look in
more detail at these two paradigms in Part Two. What is of interest to us here is how
pen and paper technology influenced the entity paradigm’s development.

The entity way of seeing things is designed to make it xeasier to store information, using
pen and paper technology. Information about a world seen as entities and attributes is
much easier to divide into rows and columns. This division makes it much easier to
store on two-dimensional paper. (The ease of use more than offsets the distortions that
arise from imposing an entity-view—as we shall see in Chapter 3.)

By contrast, computer technology is not constrained in the same way as two-dimen-
sional paper. It is possible to store computer information in many more ways than just
rows and columns. So, when using computer technology, imposing a view based on
entities and attributes creates unnecessary constraints.

SYSTEM
DESIGN

AND BUILD

modify refers to

SYSTEMS
ANALYSIS

refers to

OUTWARD
(BUSINESS)

LOOKING

INWARD
(SYSTEM)
LOOKING

refers to

BUSINESS
MODELLING

BUSINESS SYSTEM

translate

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Why we need business objects’ revisionary approach xxvii

In these circumstances, we might expect computer information to have thrown off these
constraints. However, a moment’s consideration reveals that most computer information
is still steeped in an entity-view based on paper and ink technology. This is not really
surprising because we inherit most of our ways of thinking about information from an
age dominated by this old technology.

That is why most computer information fits neatly onto paper forms, such as statements
of account, sales invoices and deal slips; examples of which are shown in Figure P.2.
The paper-bound entity way these forms handle information has been imported whole-
sale into our computer systems.

Figure P.2:
Forms—products
of paper and ink
technology

System builders recognise that it is a mistake to use the old manual paper-bound way of
handling things when automating a process. Although they recognise this, it is ironic
that they are still enchained to a paper-bound entity way of viewing the business.

2.2 Computing technology bringing radical changes

The technology leap from paper and ink to computers is enormous. Yet, the underlying
entity paradigm with its rows and columns structure has not yet really changed. As we
have just seen, forms such as sales invoices and deal slips have not been transformed
into something radically different; i.e., something that looks as if it were based on com-
puting—not paper and ink—technology.

Changes have occurred, but if we look closely, little change has taken place in the basic
information structure. The big change is in the efficiency with which they are processed.
Automated computer systems process more deal slips (and more sales invoices) faster
and more accurately than the old manual paper systems.

Although this is a welcome improvement, i t is still disappointing that we have not yet
had the kind of radical change (and the benefits it would bring) one might expect from
computer technology. Business objects are now bringing this radical change—we will
see the results in Part Six’s worked examples.

MANUAL

BANK

LTDINK

FX DEAL SLIP

NATLAND BANK

PURCHASE

Currency:

Currency:

SALE

Amount:

Amount:

10234NUMBER

COUNTERPARTY

7 Million

10 Million$

£

MANUAL

BANK

LTDINK

MANUAL INDUSTRIES PLC
1 NOWHERE ROAD
PARKERS GREEN
LONDON
NW0 0WN

STATEMENT OF ACCOUNT

BUSINESS ACCOUNT
01234567

DETAILSDETAILS

BALANCE FORWARD

MANUAL ENTITIES INC. 12,000

20,000

50,000

10,000

20,000

30JAN

01FEB

01FEB

03FEB

03FEB

06FEB

09FEB

15,000

150,000

153,000

143,000

93,000

113,000

AUTOMATED ENTITIES LTD.

ACME OBJECTS

OBJECT DELIVERIES PLC

PARADIGM SHIFTERS & CO

SUBSTANCE & SONS

PAYMENTS RECEIPTS DATE

1994

BALANCE

DATE SALESPERSON

Subtotal
VAT

Total

SALES INVOICE

ACME INDUSTRIES
P.O BOX 123
LONDON
ENGLAND

ACME DISTRIBUTION
1 POULTRY STREET
LONDON EC2

ENGLAND

1 1

22

3

44

3

Round Busine ss Obj e ct s

Square Bus in e ss Obj e c t s

Round Sys tem Obj ec ts

Square Sys t em Obj ec t s

19th Sept Joe Smith

£400 £400

£300 £600

£200 £600

£100 £400

5432112345

£2,000

£2,350

£350

MANUAL

INDUSTRIES

PLCINK

ORDEREDORDERED SHIPPEDSHIPPED DESCRIPTIONDESCRIPTION PRICEPRICE TOTALTOTAL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxviii

2.3 O-O programming’s halfway house

Most O-O system developments are being carried out using an entity view of the busi-
ness. Without an understanding of business objects, the developers have no choice.
This situation is reflected in the many O-O textbooks that suggest using entity modelling
for the early stages of system development.

This explains, to some extent, why O-O is currently having more success with objects
whose task is to make systems work rather than reflect reality—such as the objects in
screen interfaces. For example, O-O has been used to develop impressive graphical
user interfaces (GUIs). However these systems have less impressive, more traditional,
innards.

Figure P.3 explains why. Their innards contain objects that reflect business entities
rather than business objects. The result is a kind of halfway house—built from O-O busi-
ness entities rather than business objects. The figure also illustrates how we need to
construct business objects—by re-engineering the business entities.

Figure P.3:
O-O’s halfway
house

3 What do we re-engineer—paradigms

Figure P.3 implies that we need to re-engineer the business entities into business
objects. However, this is only part of what must happen. The way we see the business
is supported by a whole framework of ideas—a paradigm. It is this that we actually re-
engineer.

For our purposes, it makes sense to divide this framework into two levels; a business
paradigm and an information paradigm level. The specific objects we are interested in at
the business paradigm level will vary from business to business. For example, the secu-
rities industry has one group of business level things, such as securities trades; while
the oil industry has different business level things, such as oil barrels. Things at the

BUSINESS OBJECT-ORIENTED
SYSTEM BUILDING

TRADITIONAL SYSTEM BUILDING

BUSINESS
ENTITIES

translate refers to

refers to

refers to

translate

etalsnart

O-O'S
HALFWAY

HOUSE

O-O
BUSINESS
ENTITIES

BUSINESS
ENTITIES

BUSINESS
OBJECTS

BUSINESS
ENTITY
MODEL

BUSINESS
OBJECT
MODEL

BUSINESS
OBJECTS

O-O
SYSTEM
ENTITY
MODEL

SYSTEM
OBJECT
MODEL

describe

describe

r
e

e
g

ni
g

n
e-

e
r

SYSTEM
ENTITY
MODEL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 What are thebenefits of re-engineering business paradigms? xxix

information paradigm level are more fundamental and do not vary from business to
business. For example, within the entity paradigm, both securities trades and oil barrels
are business entities. This division into two levels makes the re-engineering more
straightforward. It falls neatly into two corresponding steps as shown in Figure P.4.

First, we re-engineer the entity paradigm into the object paradigm (the first half of this
book describes how this is done). It is worth noting that this first step does not, by itself,
change the way we see the business. At the end of step one (shown in Figure P.4), the
entity business paradigms no longer have a foundation. So, in step two, we re-engineer
them into object-oriented business paradigms. These are built upon the new object par-
adigm that we re-engineered in step one. It is at this stage that we start seeing the busi-
ness in a radically different way. Part Six contains worked examples showing how this is
done.

Figure P.4:
Two re-engineer-
ing steps

The advantage of this division into two levels is that it separates the information founda-
tions, which only need to be re-engineered once, from the business paradigms, which
need to be re-engineered for each business (because they vary from business to busi-
ness). This means we can re-engineer the information foundations once and for all in
this book. With the new foundations in place, you only need to consider their business
paradigm levels when you start to re-engineer your existing systems.

4 What are thebenefits of re-engineering business paradigms?

Once you understand what business objects are, it is relatively easy to re-engineer the
business paradigm level of existing systems. But what are the benefits of doing this?
When people start re-engineering their business paradigms, the superiority of the object
foundations soon becomes apparent. The final business model is not only functionally
richer than the original system, but it is significantly simpler and more compact.

4.1 Greater explicitness, increased accuracy and more re-usable

When we started to re-engineer business paradigms, we found that we were construct-
ing a model whose business patterns were both more explicit and more accurate. One
important result of capturing more of a pattern explicitly and capturing it more accurately
is that it becomes more re-usable. This turns out to be part of a general trend towards
greater accuracy in most engineering disciplines. In Chapter 1 we look at how similar
increases in accuracy in manufacturing engineering enabled the development of inter-
changeable (in other words, re-usable) parts.

Entity
Paradigm

Object
Paradigm

Object
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Object
Business
Paradigm

#1 Object
Business
Paradigm

STEP ONE STEP TWO

SHIFTING TO THE
OBJECT PARADIGM

SHIFTING THE
BUSINESS PARADIGMS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxx

4.2 A substantially more compact business model

As we continued to re-engineer, we began to realise that not only does the object para-
digm enable substantially more compact models, but the larger the scope of the re-engi-
neering the greater the compacting. This is very different from traditional entity
modelling (and computer system building). There, when the scope is increased, the
overall complexity of the system increases. Each new pattern has to be harmonised
with the existing patterns. Each time the scope increases, the task of harmonisation
gets more onerous. The traditional rule of thumb is that the more patterns the model
contains, the greater the cost of harmonising each new pattern (because there are more
patterns to harmonise with).

Figure P.5:
Increases in scope

Business objects handle increases in scope in a very different way. Each new pattern,
instead of adding to complexity, provides an opportunity for compacting a number of
patterns into a single, more general, pattern and so creating a simpler model. Adding
additional new patterns creates further opportunities to compact, generalise and sim-
plify the model.

The more effective way in which the object paradigm deals with increases in scope is
illustrated in Figure P.5. Part Six provides examples.

5 Summary

To briefly summarise this Prologue:
• Underlying the approach taken in this book is a core issue—how can we

accurately reflect the business in a model and so in a computer system?
This book explains how business objects can tackle and resolve this issue

Narrower

Traditional
Entity
Modelling

Object
Modelling

Wider

Lower

Higher

C
O

M
P

L
E
X

IT
Y

/
S
IZ

E

SCOPE / FUNCTIONALITY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Summary xxxi

by changing the way we see things.
• We currently see things in terms of entities and attributes. These were

developed for use with paper and ink technology and are unsuited for com-
puting technology. Business objects, by contrast, can take full advantage of
computing technology’s potential.

• We need to re-engineer our business entities into objects. This is done in
two steps; a re-engineering of the current entity information foundations to
object foundations and then a re-engineering of the business paradigms
from entity to object foundations.

• We undertake the first step here in this book. When you re-engineer your
existing systems, you only need to undertake the second step—re-engi-
neering the business paradigms.

• The re-engineering brings enormous benefits. It enables better business
models—and so computer systems—to be built. These are simpler, more
compact, more explicit, more accurate and more re-usable.

To build these models, you need to understand what business objects are and learn
how to apply them. The second half of this book helps you acquire the skills in applying
business objects by taking you through a number of worked examples.

We now move on to the first half of the book, which gives you the understanding of busi-
ness objects you require by re-engineering the current entity paradigm into the object
paradigm.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
xxxii

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part One
Our Strategy for Re-Engineering

Entities into Objects

Chapter 1 What and How We Re-Engineer

Chapter 2 Focusing on the Things in the Business

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 1
What and How We Re-Engineer

1 Introduction

2 What do we re-engineer?

3 How do we re-engineer? With thought experiments

4 The benefits re-engineering brings

5 Re-engineering entities into objects

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Chapter 1 What and How We Re-Engineer

1 Introduction
In the Prologue, we divided the re-engineering of our business paradigm’s entities into
two steps— as illustrated in Figure 1.1. Step one is a re-engineering of the entity foun-
dations (in other words, the entity paradigm). Here, in Part One, we start by looking at
our strategy for this re-engineering. Then, in Parts Two through Five, we implement it.
Finally, in Part Six, we move onto step two and look at how we re-engineer our business
paradigms.

Figure 1.1:
Re-engineering
the entity para-
digm

Part One covers the strategy for the re-engineering of the entity paradigm in two chap-
ters. In this, the first, we look at our approach, addressing three questions:

• What do we re-engineer?
• How do we re-engineer?
• What benefits does it bring?

In the next chapter, we focus in on exactly what we will re-engineer—the things in the
business.

2 What do we re-engineer?

What do we re-engineer? We ask the question at two levels, so, we get two answers—
paradigms, and fundamental particles.

At the top level, we re-engineer paradigms. Seeing what this involves helps us to under-
stand what is going on. At a lower level, we re-engineer the fundamental particles from
which the paradigm is built. We look at these two levels in the following sections.

2.1 Paradigms

Seeing what happens when we shift from one paradigm to another is the best way to
understand what a paradigm is. In the Prologue, we made the point that this involves
fundamental changes to the way we see things. But until you have actually been
through the experience, it is difficult to appreciate that just seeing something differently
can have a fundamental impact. However, we can use an analogy between ambiguous
pictures and paradigm shifts to get a feel for what is going on.

Entity
Paradigm

Object
Paradigm

Object
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Object
Business
Paradigm

#1 Object
Business
Paradigm

STEP ONE STEP TWO

SHIFTING TO THE
OBJECT PARADIGM

SHIFTING THE
BUSINESS PARADIGMS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 What do we re-engineer? 5

2.1.1 A re-engineering analogy

We use the well-known ambiguous picture in Figure 1.2, not just to give us a feel for
what is going on, but also to counter two common misconceptions. Most people tend to
assume that:
1. Different views of the same thing must somehow be basically similar, and
2. Seeing something differently involves changing the thing.

Neither of these is true for the ambiguous picture. Its two views are not at all similar and,
despite this, nothing in the underlying picture has changed. What changes when we
shift from one view to another is how we see the underlying picture. The picture itself
remains the same.

Figure 1.2:
Two views of the
same underlying
picture

Let us look at what is going on in more detail. Assume I start by seeing two faces and
then I switch to seeing a vase. When I switch, I have to dismantle my image of two
faces and then construct an image of the vase. When I do this, the picture does not
change. Nevertheless, I start to see the same picture in a radically different way.

We can get some idea of how different each perception is by looking at the way the two
views classify the parts of the picture —at their semantic structure. This is mapped in
Figure 1.3. The two structures are so different that the only elements with similar
names (‘lip’ and ‘lips’) refer to different parts of the picture.

Figure 1.3:
Map of the seman-
tic structure of the
two views

FACE

BROW

NOSE
LIPS

CHIN

VASE

LIP

STEM

BASE

FACE 2

LIPS 2

NOSE 2

CHIN 2

BROW 2

FACE 1

LIPS 1

NOSE 1

CHIN 1

BROW 1

VASE

BASE

STEM

LIP

TWO FACES VIEW VASE VIEW

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Chapter 1 What and How We Re-Engineer

Fundamental paradigm shifts work in a way analogous to this ambiguous picture. Our
current paradigm imposes one view on the world. The shift to a new paradigm leads to a
radically different way of seeing exactly the same world. Like the picture, we can only
see the world through one paradigm at a time. But unlike the picture, where we can shift
back and forth between the two views at will, a paradigm shift is normally one way—
from the old to the new. This is because when we see the new paradigm’s world view,
we recognise the faults of the old one. The new paradigm then appears obviously bet-
ter: we are not tempted to shift back.

The analogy holds in another important way. Like the picture, a paradigm shift involves
a substantial discontinuity. Intuitively we tend to assume that two views of the same
underlying thing must be similar, but the opposite is true of both the picture and para-
digm shifts—they are completely different. This explains why they have the potential for
delivering enormous leaps in performance.

2.1.2 Radical changes lead to radically different questions—an example

When we start seeing something in a different way, we ask different questions about it.
For example, we would naturally ask different questions about the vase and two faces in
the ambiguous picture. Many historical examples of paradigm shifts significantly change
the questions people ask and so the way they think and behave. The following example
from chemistry illustrates how this happens.

In the 19th century, chemists assumed that things were made out of indivisible billiard
ball-like atoms. They assumed that the atoms of each particular element were indistin-
guishable and that the atoms of different elements had different weights. In this scheme,
it made sense for chemists to devote a lot of effort into trying to calculate precisely how
much the standard billiard ball atom of a particular element weighed. For example, they
calculated chlorine had an atomic weight of 35.453.

When the paradigm for atoms shifted in the 1920s, under the new scheme of things,
atoms were seen as miniature solar systems—so they had divisible parts (see the two
views illustrated in Figure 1.4). Chemists then began to look at elements in a new light.
Instead of indistinguishable atoms, they began to see that some elements had a
number of different types of atoms; each with different weights that they called isotopes.

Figure 1.4:
Two views of an
atom

BILLIARD BALL VIEW SOLAR SYSTEM VIEW

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 What do we re-engineer? 7

This, they realised, meant that their cherished atomic weights were not a fundamental
property of the element’s atoms but a fortuitous mixing of different isotopes. Chlorine’s,
for instance, was the result of a natural mixture of two isotopes, 35 and 37, in the ratios
75.33 percent and 24.47 percent. It was not a real property of the chlorine atom at all.
Chemists then lost all interest in atomic weights and stopped trying to calculate them.
They regarded all their previous efforts as irrelevant. The new way of seeing atoms had
changed the questions they asked and so the way they thought and behaved.

2.1.3 Paradigms as holistic frameworks

One of the reasons that paradigms have such an influence on our thinking and behav-
iour is because they provide holistic frameworks for our knowledge. In other words, they
offer consistent and coherent systems for seeing the world.

2.1.3.1 Unambiguous views of the world

A key function of these holistic frameworks is to give us an unambiguous view of the
world. The fact that we can view a picture in a number of ways (at different times)
implies that the picture in itself cannot determine what we see. However, we can deal
with a picture much more efficiently if we have an unambiguous view of what it is. That
is why our brain naturally imposes such a view and why we only see one view at a time.

The same principle operates with paradigms. Our knowledge of the world is ambiguous.
So our brain uses a paradigm to give us a particular unambiguous view. The paradigm
makes us feel that this is the only natural view of a situation. Most of the time, it is so
successful that we find it difficult to accept that our view is only one of many possible
interpretations.

2.1.3.2 Needing the whole holistic picture—an analogy

In a holistic framework, the whole is more than the sum of its parts. For a paradigm, this
means that we do not see its parts until we have seen the whole. In other words, we can
only see the elements that make up a paradigm as its parts in the context of the whole
paradigm. This sounds odd, but we can illustrate what it means with another picture
analogy. Consider the picture of two faces in Figure 1.5. This is unambiguous. It does
not look like two vases, or indeed anything other than two faces.

Figure 1.5:
Another two faces

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
8 Chapter 1 What and How We Re-Engineer

Now look at the picture in Figure 1.6. It is ambiguous; we can see it as either a
mosque’s minaret or two faces. You may have noticed that Figure 1.5 is the same pic-
ture as Figure 1.6, with the top section removed. This means Figure 1.5 must contain
most of the elements that make up Figure 1.6’s minaret view. When we first saw it, how-
ever, we did not see two-thirds of a minaret. This is because we need to see the whole
minaret pattern before we can recognise a part of it. Figure 1.5 does not have enough
of the pattern to make up a whole minaret, so we do not see one. This means we also
did not see the elements of Figure 1.5 as parts of the minaret.

Figure 1.6:
Two faces or a
mosque’s minaret

We need to see the whole pattern before we can see the parts. Now that we have seen
the whole minaret pattern, we can look at Figure 1.5 and see its elements as parts of
the minaret.

2.1.4 Difficulties in seeing a new paradigm

The ease with which we can shift from one view of an ambiguous picture to another may
seem to imply that shifting paradigms is just as easy. Unfortunately, this is not so. When
we start re-engineering, we shall find all sorts of difficulties.

Paradigms, by their nature, do not encourage re-seeing, re-thinking and re-inventing.
Their task is, as we said earlier, to make us see one unambiguous view of things. This
makes them difficult to re-engineer. The features of a paradigm that are strengths when
dealing with everyday tasks tend to become barriers to a successful re-engineering.

In everyday use, a paradigm’s strength comes from enabling us to accommodate the
new patterns we meet into its framework. This becomes a problem when we start
re-engineering. Then we often need to recognise when a new pattern does not properly
fit in with our current paradigm. This is what starts the re-engineering process rolling.

However, our current paradigm tends to make it difficult for us to recognise this. It trains
us to see the world in a particular way. It also, by default, trains us not to see the world
in the way we need to for the new paradigm. Instead, we see the new patterns that
should provoke a re-engineering in the existing paradigm’s terms.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 What do we re-engineer? 9

‘‘fSWe use another picture analogy to illustrate how this works. Figure 1.7 has three
boxes based upon those used in a common psychology experiment. These are shown
to people one box at a time, and they are asked to say what they see.

The experiment reveals that what people see in the first box affects what they do and do
not see in the later boxes. When people are shown the box on the left first, they see the
sequence of numbers 12–13–14. If they then look at the middle box, they still see the
middle character as ‘13’. Surprisingly, a number of people, when looking at the box on
the right, still see the middle character as ‘13’. Recognising the 12–13–14 pattern in the
first box has stopped them seeing the A–B–C pattern in the second and, in some cases,
the third box.

Figure 1.7:
How what we see
first affects what
we see later

This is not because people find it easier to see numbers than characters. This was
proved by repeating the experiment in the reverse order, showing the box on the right
first. People then start off seeing the sequence of letters A–B–C. This sets the pattern.
So when they then look at the box in the middle, they see the middle character as ‘B’.
And again when they look at the box on the left, some people still see the middle char-
acter as ‘B’, in other words, a sequence 12–B–14.

In both cases once people grasp the first pattern, they have some initial difficulty in see-
ing an alternative pattern even when the original one is incomplete (as in the last box).
This gives us some idea of how difficult it is to see a new pattern that is ruled out by the
current pattern. It also gives us an idea of how difficult it can be to re-engineer when the
old paradigm trains us not to see the pattern we need to recognise for the new para-
digm.

2.1.4.1 Germ paradigm—Pasteur example

This picture example is not just an academic psychological trick. In such practical disci-
plines as medicine, paradigms have trained doctors to see new patterns of disease as
part of an old pattern, sometimes with deadly results. Consider, for example, what we
shall call the germ paradigm.

In the 19th century, the French scientist Louis Pasteur (1822–1895) developed an
understanding of germs (micro-organisms) and a recognition that these played an
important role in disease. He used this knowledge to help the French beer, wine, and
silk industries. He also used it to improve people’s health, developing vaccinations
against anthrax and rabies. His and other scientists’ successes with the ‘germ para-
digm’ led to a belief in the medical profession that, if a disease was not caused by a par-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
10 Chapter 1 What and How We Re-Engineer

asite, it must be caused by a germ. They assumed that the answer to the question—
‘What is causing this disease?’—involved either parasites or germs.

This acceptance of the germ paradigm eventually led to problems. We now know that
some diseases are caused by a deficiency in diet (and not germs or parasites). One of
these diseases is beriberi. In the early years of this century, there was an epidemic of
beriberi in Asia that killed millions of Chinese and Indonesians. The germ paradigm was
so deeply embedded in the medical establishment’s thinking that they unconsciously
and unthinkingly assumed that the beriberi epidemic was caused by germs and carried
out their research accordingly.

Eventually, dietary experiments by the Japanese navy challenged this assumption.
These helped to prove that it was not the presence of germs that caused the disease,
but the absence of something in the rice people were eating. It was then discovered that
the new processes of steam-polishing rice, imported from Europe to Asia, destroyed the
vitamin B1 in the hull of the rice. It was the lack of this vitamin B1 that was causing the
beriberi epidemic.

Intriguingly, a leading professor of tropical disease at that time, Patrick Manson, did not
accept the new paradigm, despite all the evidence. He insisted on interpreting the Japa-
nese navy findings in a way consistent with the old germ paradigm. He claimed that the
germs that caused the disease can and do live in the polished rice but cannot live in the
unpolished rice. His training in the old paradigm was so strong that he was seeing the
new patterns in its terms. At that stage the ‘new pattern’ (in other words, the results of
the Japanese navy’s experiments) could be interpreted to support either theory. Only
later on did it become clear that the germ paradigm was not a helpful way of looking at
beriberi.

In a more modern medical context, some ‘rogue’ scientists are suggesting that AIDS
researchers might be thinking and behaving in a similar way. They think that AIDS
researchers might be stuck with a ‘virus paradigm’ that directs them to only look for a
virus as the cause for AIDS. Their concern is that this may be making them ignore alter-
native patterns that might turn out to be more fruitful.

In a computing context, we can see something similar happening in O-O programming.
When an O-O programming language (OOPL) is introduced into a traditional program-
ming environment, programmers trained in traditional programming often still use the
traditional patterns to program in the new language. They have been taught to see and
ignore other patterns. These other patterns include those they need to see to make
effective use of the new OOPL. As a result, they have some difficulty learning how to
work with it.

2.2 What do we re-engineer? The fundamental particles of paradigms

We have seen that the answer to the question—‘What do we re-engineer?’—at the top
level is paradigms. We now ask this question at a lower level. The answer this time is
fundamental particles. Paradigms are often built around one or more central patterns or
particles. When this happens, a fundamental re-engineering usually involves changing
those particles.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 What do we re-engineer? 11

2.2.1 Re-engineering information’s fundamental particles

There is a close analogy between the way physical matter paradigms, such as the atom
paradigm in the earlier chlorine example, work and the way information paradigms
work. We now pursue that analogy.

2.2.1.1 The physical matter paradigm analogy

Physics explains the world in terms of its physical matter paradigm. The most funda-
mental patterns in this paradigm are physical particles. These are the building blocks
from which physicists construct their world. They started the 20th century with a para-
digm in which the atom was the fundamental physical particle. While they subscribed to
this paradigm, they believed everything—from aardvarks to zebras—was made of indi-
visible atoms.

Since then, physicists have re-engineered the physical matter paradigm a number of
times—each re-engineering is characterised by a complete change of fundamental par-
ticles (shown in Figure 1.8). When physicists divided the atom, they introduced a whole
new family of fundamental particles: electrons, neutrons, and protons. When they put
these into their enormous particle accelerators, they found (and so shifted to) a profu-
sion of new types of particle—things such as leptons and fermions. Their latest para-
digm is less prolific; it has a single type of fundamental particle—superstrings.

Figure 1.8:
Shifts of funda-
mental physical
matter particles

2.2.1.2 The information paradigm’s particles

Information paradigms work in a similar way. Just as physical matter paradigms have
fundamental physical particles, so they have fundamental information particles. When
we use the paradigm, we use these particles to build up our picture of the world. For
instance, the entity paradigm has four explicit fundamental particles: entity types, enti-
ties, attribute types, and attributes. When we use the entity paradigm, we build up our
picture of the world using these four particles.

Re-engineering our entity paradigms, like re-engineering physical matter paradigms,
involves a radical shift of fundamental particles. When, in Parts Three and Four, we re-
engineer to the object paradigm, we shall see these fundamental particles change. We

SUPERSTRINGS

ATOMS

LEPTONS FERMIONS

ELECTRONS PROTONSNEUTRONS

ETC.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
12 Chapter 1 What and How We Re-Engineer

will start with the entity paradigm’s four particles and end up with the object paradigm’s
single particle (shown in Figure 1.9). This is a similar pattern of changing particles to
the re-engineering of the physical matter paradigm illustrated in Figure 1.8

Figure 1.9:
Shifting funda-
mental informa-
tion particles

2.2.2 Recognising that business models have fundamental particles

Some people initially find it difficult to think about fundamental particles and how we use
them to see the world (or business). It gets too close to the foundations of how we see
the world. Sometimes, people in the computer industry also succumb to the feeling that
somehow the notion of fundamental particles does not apply to business models.

For example, most people working with computers would accept that one must be con-
ceptually accurate when talking about computer code (computer software system’s fun-
damental particles). However, some of them are less happy about being accurate when
talking about the business’s particles. They are not sure whether the things in the busi-
ness are objects or entities; for example, is a car a car object or a car entity. They prob-
ably feel that this is not particularly relevant to them. They certainly do not think that
their talk about business things commits them to any particular type of thing and cer-
tainly not any type of fundamental particle. For example, if they were to put a sign for a
car entity in their business model, they would not feel that this commits them to classify-
ing the car as an entity. Or, that it commits them to having entities as their fundamental
particles.

This attitude may be appropriate for casual conversation, but is quite harmful when
doing something formal, such as business modelling. If we unconsciously use an entity
approach to business modelling then, whether we like it or not, we are seeing the busi-
ness in terms of entities and attributes. Ontology, the branch of knowledge that studies
fundamental information particles, calls this ‘ontic commitment’. Until we realise how
crucial this ‘ontic commitment’ is, we will not be able to start the re-engineering process.

We might not be conscious of making this ontic commitment when we build systems
because we are focusing on technical problems. But it is still there, happening at a sub-
conscious level. The problem with leaving these kinds of decisions to the whims of our
subconscious mind is that our ontology (in other words, our scheme of fundamental par-
ticles) tends to end up as a confused hotchpotch. People may be able to muddle
through system building with a confused ontology, but they are missing out on an enor-
mous opportunity. To take advantage of it, they need to make accurate ‘ontological’
decisions about types of business things during business modelling.

Some people might think we can avoid this ‘ontic commitment’ by leaving out the busi-
ness modelling stage altogether. But they are fooling themselves. As soon as we start

ENTITY-TYPES ENTITIES

ATTRIBUTE-TYPES ATTRIBUTES

OBJECTS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 What do we re-engineer? 13

talking about business things—which we have to do at some stage—we have commit-
ted ourselves. So even if we start our system building by coding, we still make an ontic
commitment. A system whose computer code refers to things in the business—even
apparently innocuous things like ‘company’, ‘date’, or ‘amount’—is clearly committed to
those things’ existence. And they are of a certain type: entities, objects, or something
else. There is no way of avoiding this.

2.2.3 Fundamental particles versus complex business objects

We may now accept that, when we model, we commit ourselves to some kind of funda-
mental particle of business information. But people often succumb to another feeling—
one that says thinking about these fundamental particles is a waste of time. They feel
more benefit is to be gained from coming to grips with complex business objects. (In the
financial sector a complex object would be something specialised, such as a ‘reverse
repo’—a complex deal with a number of elements.)

What they (and we) need to recognise is that the only way to transform apparently com-
plex business objects, such as reverse repos, into simple ones is to start with their fun-
damental particles. For most people, the problem is getting our ideas about complex
objects into shape seems to have an obvious benefit. Whereas, the benefit of getting
their fundamental particles right is not so obvious.

2.2.3.1 Building construction analogy

Another analogy, this time an engineering one, should help us see more clearly why
starting with fundamental particles rather than complex business objects brings much
bigger benefits. If we look at the history of building construction, we can see that, at
each stage of its development, the nature of its fundamental particles placed a limit on
what could be built. (These particles are relatively easy to spot because they are literally
physical building blocks.) History shows that shifting to new and better particles has led
to big improvements.

A long time ago when most buildings were made out of mud and straw, we could say
the builders had a mud paradigm. While the buildings were attractive, and in hot dry
countries practical, it was technically difficult, often impossible, to construct a building
much higher than two stories. Mud (the fundamental particle) just did not have the
strength for it.

Then builders discovered that once mud is baked in a kiln to produce a brick its strength
increases substantially. Buildings with ten stories became feasible using this new,
stronger, brick particle. But bricks have their limit. They cannot support the skyscrapers
we see in most major city centres. These use a different, stronger, building block—re-
enforced steel and concrete. With this new ‘particle’, buildings reaching up to the clouds
can and have been built.

It is plain that the stronger the particle, the taller the building can be constructed. If
someone had not worked at improving the fundamental particle, we would not be able to
construct the tall structures we have today.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
14 Chapter 1 What and How We Re-Engineer

A similar analogy can be made with the way in which we talk of early human civilisa-
tions. We talk of a Stone Age followed by the Bronze and then the Iron Age. These
names refer to the material (the fundamental particles) used to make tools. The nature
of the ‘particles’ clearly had an enormous influence on the overall nature of the civilisa-
tion. Advances in material (particles) led to substantial advances in technology.

The fundamental particles used in the information paradigm work in the same way. We
can only build strong powerful computer systems if we use strong powerful particles.
These are not physical, like building materials. The physical problems of building com-
puter hardware are reasonably well understood. Engineers are having enormous suc-
cess developing better hardware without a fundamentally new physical particle.

The fundamental particles of an information paradigm are more like ideas than physical
building materials. Most system builders are now using entity and attribute particles
(ideas). However, they are finding that these particles do not match up to the task of
building very complex business systems—just as house builders found their mud ‘parti-
cles’ were not strong enough for tall houses. When they try to build complex business
systems, they have to put in a substantial effort and, even then, often fail.

They need stronger and more powerful particles than entities and attributes. With a bet-
ter information particle, such as business objects, they will have more success building
these very complex systems. When we look at the problem in this way, spending time
improving the fundamental particle, by re-engineering entities to objects, is not a waste
of time. In fact, it is probably the only practical and sensible way to deal with the situa-
tion.

3 How do we re-engineer? With thought experiments

How do we re-see and re-think the entity paradigm’s fundamental particles? What tools
do we have to help us? If we were scientists trying to find new facts about the world, we
could conduct physical experiments with test tubes or pulleys or whatever in our labora-
tory. But here we do not want to find new facts; we want to re-see and re-think existing
ones. We do this using thought experiments—a kind of mental analogue of the physical
experiments—scientists do.

3.1 How to do a thought experiment

Physical experiments involve carefully observing something happening, often in a labo-
ratory. Typically, the experimenter predicts what he expects to happen and sees
whether it actually does. Thought experiments are similar but they involve no physical
observation whatsoever, merely thinking or mental observation. This means that they do
not need a laboratory. These are the kind of experiments that can be performed in an
easy chair.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 How do we re-engineer? With thought experiments 15

3.2 Principles of a thought experiment

A thought experiment works by first making an inconsistency in a paradigm explicit.
Highlighting the inconsistency engenders a distrust of the paradigm. Then, the thought
experiment demonstrates how the new paradigm neatly gets around the inconsist-
ency—clearly showing its superiority.

A typical experiment works like this. We are asked to think about what we would nor-
mally expect to happen in a situation. This is chosen to highlight the superior coherence
of the new paradigm. We are often also shown how our current paradigm leads us to
expect two contradictory things to happen—as in the example below. At no stage do we
actually have to do anything.

3.3 An example of a thought experiment

Here is a simple thought experiment. It has been used by psychologists to show how
misleading our intuitions can be. Consider Figure 1.10, which shows the apparatus for
the experiment—an imagined piece of coiled-up tube and a marble.

Figure 1.10:
Shooting a marble
into a coiled tube

Now imagine what would happen if the coiled tube was laid flat on a table and a marble
was shot at great speed into the inner end of the tube. We all agree that it would speed
around the coils of the tube and come out fast at the outer end of the tube. The question
is:

What direction does it go in once it has left the tube?

Is it one of the directions marked in the figure or a different direction? Psychologists,
who have done this test under controlled conditions, find most people (around 70 per-
cent) chose direction 1. This includes physics graduates who have been taught the laws
of motion and have a good understanding of what would happen.

1

2

3

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
16 Chapter 1 What and How We Re-Engineer

Figure 1.11:
Water spurting out
of a garden hose

To get our inconsistency, we do another similar thought experiment. This time, the
experiment is conducted with a garden hose and water. We imagine water being
pushed down a similarly coiled garden hose laid flat on the lawn. What direction do we
see it emerging from the end? Everyone knows it gushes straight out—as shown in Fig-
ure 1.11.

The two experiments have a similar pattern. They both involve something going through
a coil and coming out the end at speed. Most people, when they recognise this, realise
that there is a common general pattern and that direction 2 is the correct answer to the
first thought experiment. When the thought experiment involves something as familiar
as a garden hose then we can predict the results properly; the water goes straight out of
the hose—not up or down. We then use the familiar pattern from the garden hose
experiment to clear up our pattern for what happens in the marble experiment.

Interestingly, this example clearly shows how we still have some false ancient intuitions
deeply rooted in our minds. Ancient and medieval physics predicted the marble in the
first experiment would travel in direction 1, the common choice for 70 percent of people
today. By coincidence, this physics is based on the work of the Ancient Greek Aristotle.
(The substance paradigm, as we will see in Chapter 3, is also based on his work.)

Yet, Aristotle’s way of thinking has been scientifically out of date since the 17th century
when Newton discovered his laws of motion. The hose and the marble experiments are
actually both direct applications of his first law of motion:

A body continues in its state of rest, or uniform motion, unless acted upon by some
external force.

When the water (or the marble) leaves the nozzle, it is moving straight forward. The
other external forces acting upon it (gravity and friction) are too small to be relevant for
the first few inches of movement and so can be ignored. Because there is effectively no
external force, the water (and marble) should move with a uniform motion—in other
words, in a straight line.

Since the 17th century, physics has predicted correctly that the marble would go in
direction 2. It is just that these laws have not fully worked their way into everyone’s
minds. We shall see a similar situation in Part Two with Aristotle’s ancient substance

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The benefits re-engineering brings 17

paradigm. Most people still use it because later developments have not worked them-
selves into their minds.

3.4 Einstein’s thought experiment

The thought experiment is a powerful tool for re-engineering paradigms. That’s why sci-
entists often use it to explain their major shifts. Even sophisticated modern paradigm
shifts are often explained using simple thought experiments. Albert Einstein’s theory of
relativity is a good example. This is an extremely sophisticated theory (paradigm). It is
so sophisticated that when Einstein published his results, most of his contemporaries
had great difficulty in understanding them. Yet, he explained his theory of relativity using
a simple thought experiment with such everyday objects as a moving train, bolts of light-
ning, and a couple of people to observe what was going on.

Thought experiments like these have been, and will continue to be, a natural and useful
tool when re-engineering. They help us re-see, re-think and re-invent. You will come
across a number of them in our re-engineering.

4 The benefits re-engineering brings

Re-engineering to objects creates a foundation for the re-engineering of business para-
digms. I have found that together these bring two main benefits. They enable:
1. More accurate patterns, and so functionally richer systems, and
2. More compact patterns, and so simpler systems.

4.1 More accurate patterns, functionally richer systems

Re-engineering business paradigms enables us to construct more accurate, functionally
richer business models. Working with business objects is like working with a powerful
microscope. It enables us to see the real world more accurately. This, in turn, enables
us to spot functionally richer, re-usable business objects.

In general, the more accurately a model reflects the world, the more powerful it is. This
is true of most models, not just business models. Engineers testing a new car or aircraft
design in a wind tunnel make the model accurate enough to reflect how the real car or
aircraft would behave.

The less accurate a model, the less powerful it is. Imagine the model of a battle drawn
up on a dinner table by a Colonel Blimp. The salt cellar is the advancing enemy army
and the butter dish is a hill. This model has its uses, but these are limited by its inaccu-
racy. For example, we would not even think of saying that because the salt cellar cannot
stand on top of the sloped butter dish, the enemy army would not be able to take the hill
it represents. We know the model is not an accurate enough representation of the situa-
tion.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
18 Chapter 1 What and How We Re-Engineer

If we wanted to know what the enemy army could or could not do, we would need a
more accurate model. The models built using our current entity paradigm are like Colo-
nel Blimp’s model in that they are not accurate enough for any heavy duty work.
Whereas, business object models with their increased accuracy are.

4.1.1 The cost and benefits of accuracy

The traditional attitude in system building, based on the current entity paradigm, is that
increasing accuracy leads to spiralling increases in costs. This is not the case with
objects. I have found (and we shall see in the worked examples of Part Six) that the
more accurately we model the business, the simpler, more general and so re-usable the
objects are. As the accuracy of the model increases so does the potential for generali-
sation and re-use of its objects. These more accurate objects can then be compacted
into less space than their less accurate predecessors.

This means that, within the object paradigm, the traditional rule that increased accuracy
leads to increased cost is turned on its head. The new rule is increased accuracy leads
to increases in re-use and so reductions in cost.

There are parallel situations of accuracy assisting re-use in a number of engineering
disciplines. It may help us to appreciate the part accuracy plays in information engineer-
ing if we look outside computing at the broader picture. Information engineering for
computers is a new discipline. It does not have enough of a history to give a feel for how
accuracy works. If we look at accuracy in an older, more mature, engineering discipline,
we can get a better idea. Manufacturing is a good example because it has a kind of
physical analogue to information re-use—interchangeable parts.

4.1.2 Manufacturing accuracy and re-use

Physical accuracy played an important part in the industrial revolution of the 18th cen-
tury. This is particularly clear in the introduction of interchangeable parts, a kind of re-
use that revolutionised manufacturing. We are nowadays so used to interchangeable
parts that we find it difficult to imagine what a world without them would be like. We
expect a new wheel to fit onto a car; we expect a new plug to fit into a socket. This
seems to us the natural order of things. Before the industrial revolution, things were
very different. Parts were not interchangeable; they were individually hand crafted. An
axle was made to size for the specific pair of wheels on a specific cart. It could not be
re-used, without further work, in another cart.

With physical things, such as axles and wheels, it is clear that they are only inter-
changeable if they are made to a certain level of accuracy. This level just could not be
systematically achieved in manufacturing until the 19th century. Before then, the levels
of inaccuracy that were tolerated seem astonishing to us. For example, in James Watt’s
steam engine (built in the 18th century) a sixpenny coin could easily fit between the pis-
ton and the cylinder.

The American inventor Eli Whitney (1765–1825) developed the first working system for
manufacturing interchangeable parts. He was motivated by the potential benefits of
mass production. If he could make interchangeable parts then he could make the parts

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The benefits re-engineering brings 19

en masse separately and assemble the whole product quickly and easily later on. He
sold the American Congress on his idea that guns could be mass produced this way. He
explained to them that he was going to machine his gun parts so accurately that his
workers could assemble a gun from the first parts that came to hand. They would no
longer have to tailor them to the individual gun. Congress gave him a government con-
tract in 1798 to produce 10,000 army muskets, all with interchangeable parts. (This can
be seen as an early example of military spending encouraging research and develop-
ment.)

Whitney found the task more difficult than he had anticipated and took longer than
planned; but, in the end, he was successful. He is said to have demonstrated his suc-
cess dramatically. The story goes that he threw a box of the interchangeable parts at the
feet of a government inspector and told him to make a musket from parts picked at ran-
dom.

A colleague told me of a similar public demonstration arranged by his grandfather Fred-
erick S. Bennett. Bennett was the British agent for the American car manufacturer
Cadillac. In 1908, he arranged for Royal Automobile Club engineers to demonstrate that
all the parts of a Cadillac car were interchangeable. They selected three new cars from
their crates and took them completely apart—nut from bolt, piston from rings. The
pieces were then put in a heap and thoroughly jumbled up. When the cars were reas-
sembled, they started up the first time. Then, this was seen as a great feat.

This was an American achievement. Even as late as the Second World War, the parts
for British Army vehicles and equipment, unlike their American counterparts, were not
properly interchangeable. Soldiers had to adjust them with hacksaw and file to make
them fit. Nowadays, when cars are routinely assembled from parts bought in from differ-
ent factories all over the world, this seems remarkably primitive.

One interesting feature of Whitney’s achievement is that it was accomplished without
plans or sizes for the component parts. When he first introduced mass production, he
relied on manual labourers using what were called filing jigs. These were used as tem-
plates to hand-file parts for his muskets to approximately matching dimensions. Both
the filing jigs and the manufactured parts were the product of manual labour and
depended for their accuracy upon the skill of the workers. Furthermore, not one person
could measure the accuracy of a part using a standard unit of measurement. All they
could do was look and feel whether the part matched the particular jig being used;
measuring accuracy was limited to unaided human perception. As a result, manufactur-
ing interchangeable parts was not easy.

Joseph Whitworth (1803–1887) helped to resolve this problem by establishing common
standards for accuracy that enabled plans and sizes to be specified for components. He
did this by developing precision instruments that measured accuracy far beyond the lim-
its of the unaided human eye. He gave engineers not only a common standard for ‘see-
ing’ how accurate a part was, but a standard way of describing, in advance, its
accuracy. This gave manufacturing the framework it needed to effectively and efficiently
make interchangeable parts.

Whitworth developed measuring instruments that were far more accurate than any ear-
lier instrument. Some were even accurate to a millionth of an inch. To some of his con-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
20 Chapter 1 What and How We Re-Engineer

temporaries, this level of accuracy seemed academic—only suitable for use in the
laboratory. Yet, nowadays it is commonplace. Indeed, in some industries, such as sili-
con chip manufacturing, it is insufficient.

With these standards of accuracy in place, the practical benefits of Whitney's system of
interchangeable parts became apparent. And his idea soon spread from the arms busi-
ness to farm machinery and then to almost all mechanical production. It became known
as the ‘American system’ of manufacturing. As time went by, the system was improved.
More and more accurate machine tools and measuring devices were developed. This
eventually led to the staggering success of 20th century mass production. A system that
Ford used, during the Second World War, to deliver a B–17 bomber (the Flying For-
tress) off their American production line every sixty-three minutes.

4.1.3 Accuracy’s role in the shift to business objects

Business objects are leading to an industrialisation of information in which accuracy
plays an important part. Just as physical accuracy was needed to make interchangea-
ble parts, so referential accuracy is needed to construct general and so really re-usable
objects. For example, general objects are constructed from the patterns of lower level
objects. We need to be sure that we have captured the patterns for these lower level
objects accurately. If we have not, then the generalisation magnifies the lower level
inaccuracies and does not work.

Our current entity computing paradigm, like the old individually tailored methods of man-
ufacturing, cannot deliver the required levels of accuracy. Business objects (like Whit-
ney and Whitworth’s approaches) can. As it brings greater and greater accuracy, it
delivers an increasing potential for generalisation and re-use. This helps to drive the
industrialisation of information.

4.2 More compact patterns, simpler systems

Most people find it counterintuitive that a system can be made both simpler and func-
tionally richer—especially just by using more accurate patterns. When working within a
paradigm (such as the entity paradigm), it is reasonable to assume that a piece of infor-
mation has a natural complexity. If it is made simpler, it contains less information. When
re-engineering to business objects, we cannot make this assumption. The purpose of
the re-engineering is to transform complex patterns into simpler more compact ones.

4.2.1 A simple example of compacting

We can clarify how this counterintuitive purpose works with a simple example of how a
complex pattern can be re-engineered into a simpler, functionally richer pattern. Con-
sider the nodes and arcs in Figure 1.12. We can describe the figure as follows:

A is a node.
B is a node.
C is a node.
D is a node.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The benefits re-engineering brings 21

Node A is connected by an arc to node B.
Node A is connected by an arc to node C.
Node A is connected by an arc to node D.
Node B is connected by an arc to node C.
Node B is connected by an arc to node D.
Node C is connected by an arc to node D.

This description has two basic patterns:
1. X is a node.
2. Node X is connected by an arc to node Y.

Pattern (1) occurs four times and pattern (2) occurs six times.

Figure 1.12:
Nodes and arcs

Most of you, when you look at Figure 1.12, will ‘discover’ a regularity not highlighted by
the description above. You will notice that arcs connect every node to every other node.
We can capture this regularity in a pattern. We will call this the fully connected node pat-
tern. A node is fully connected if it has arcs connecting it to all the other nodes in the fig-
ure.

If we shift to this new pattern, we can construct a more compact (more compressed)
and structurally simpler description of the figure:

A is a fully connected node.
B is a fully connected node.
C is a fully connected node.
D is a fully connected node.

This description is much more compact; it has four lines instead of ten. It is also much
simpler in that it only involves one basic pattern:
1. X is a fully connected node.

It is also richer than the first description. It explicitly recognises the fully connected
nodes regularity.

4.2.2 A classic example of compacting

Because the previous example has been kept simple, it may seem contrived. But most
paradigm shifts exhibit the same kind of compacting. Take, for instance, this classic
example from the history of science. In the early 17th century, Johannes Kepler discov-
ered that the planets moved in an elliptical pattern. Before Kepler, astronomers

A B

CD

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
22 Chapter 1 What and How We Re-Engineer

assumed that they followed an epicyclical motion where one or more circles move on
another. The elliptical pattern is structurally simpler than the epicyclic (shown in Figure
1.13). It also gives a much simpler and more accurate overall theory of planetary move-
ment. It has the same compacting characteristics as our simple example.

Figure 1.13:
Epicyclical and
elliptical patterns
of planetary
motion

5 Re-engineering entities into objects

The benefits of compacting and accuracy brought by the object paradigm make it a sub-
stantial improvement on its predecessor—the entity paradigm. The object paradigm is
just beginning to change business modelling. As the change follows its course, busi-
ness models will become substantially simpler, more compact, and more accurate.

In our journey from the entity to the object paradigm, we are going to follow the
approach described here. We will use thought experiments to help us find the new pat-
terns that undermine the old paradigm and start the re-engineering rolling. We will see
how each re-engineering changes the paradigm’s fundamental particles. We, no doubt,
will find the entity paradigm hindering us from appreciating new patterns. We will also
see how this new paradigm enables us to build simpler, more compact and more accu-
rate models—and so, computer systems. In the next chapter, we sharpen the focus of
our re-engineering.

eref ne tD
yc ci lp eE

EPICYCLE PATTERN

lipsl eE

KEPLER'S ELLIPSE PATTERN

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 2
Focusing on the Things in the

Business

1 Introduction

2 Focusing the re-engineering on things in the business

3 Problems identifying ‘things in the business’

4 Ignoring ‘things in the business’

5 What types of things (in the business) do we re-engineer?

6 Our starting point—the entity paradigm

7 Arriving at an object semantics for ‘things in the business’

8 Re-engineering the ‘things in the business’

9 The next part

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
24 Chapter 2 Focusing on the Things in the Business

1 Introduction
In the previous chapter we looked at how we are going to re-engineer entities into
objects. In this chapter we focus on the specific areas we need to re-engineer.

2 Focusing the re-engineering on things in the business

We focus the re-engineering on one area of the entity paradigm—the ‘things in the busi-
ness’.

2.1 The major elements of an information paradigm

Information paradigms, such as the entity paradigm, are typically divided into the follow-
ing three elements:

• Technology(or method and materials of construction),
• Syntax(or, structure), and
• Semantics(or, meaning).

Computer people naturally focus on the technology element. It seems indubitable that
there is a fundamental change going on in information because of the new information
technology—computing. And this technology is innovative and exciting. So it is not sur-
prising that some people overlook the two non-technological elements.

2.2 Focusing on ‘things in the business’
Figure 2.1:
Focusing on
‘things in the busi-
ness’

However, it is in one of these non-technological elements, semantics, that we find the
key to business objects—‘things in the business’. Look at Figure 2.1, which illustrates
the semantic ‘signifying relation’ between the sign and the signified. It is an obvious
truth that we cannot construct signs that reflect a business accurately unless we can

SIGN SIGNIFYING SIGNIFIED

refers to

yb ot derref er si

THINGS IN THE BUSINESSBUSINESS MODEL

BANK

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Problems identifying ‘things in the business’ 25

see the things in the business clearly. Our re-engineering focuses on developing a
much clearer, more accurate, view of these.

3 Problems identifying ‘things in the business’

Most computer people currently assume it is easy to identify the ‘things in the business’
(the signified) and make sure that the model refers (maps directly) to them. However, if
we actually try and identify the things in the business, we come across a problem.
Astounding as it may seem, most people cannot clearly and explicitly articulate exactly
what these entity ‘things in the business’ are.

3.1 The problem with our entity paradigm

Many people in the computer industry have lots of experience in constructing business
entity models. They must know what a business entity is. One might think that if we
asked them, they would tell us what one is. But when we actually ask them, they come
up with examples not explanations. They say something like ‘an entity is a thing like a
car’, or ‘a company’ or ‘a foreign exchange deal’. They cannot provide an explanation
because their understanding of entities is so deeply ingrained that it is unconscious.
And their acceptance of it so complete that asking what an entity is seems to have no
practical use.

Most people adopt a similar attitude. They instinctively assume that they and everyone
else know what a business entity is. For instance, IT managers expect even the most
lowly trainee programmers to come fully equipped with the knowledge of what a busi-
ness entity is—though not necessarily what the particular entities are for their business.
They expect this, despite the fact that the programmers are not consciously aware of
what one is nor are they likely to be formally taught this.

Figure 2.2:
Magical and mys-
terious semantics

Nevertheless, the managers’ expectations are justified because it is plain from the
trainee programmers’ behaviour that they do know. It is as if something magical and
mysterious is linking the model to the business entities—as shown in Figure 2.2. It
seems odd to me (and by the end of the book, it will seem odd to you) that companies

SYSTEMS
ANALYSIS

BUSINESS
MODELLING

refers to

SOMETHING
HAPPENS

A
BUSINESS
ENTITY

translate

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
26 Chapter 2 Focusing on the Things in the Business

regularly spend millions of pounds building computer systems that depend on such
mysterious semantics.

3.2 Problems finding ‘things in the business’ – a simple example

We can appreciate how mysterious our current entity semantics is by looking at this
simple example. Consider what a simple entity model of the sentence, ‘my car is red’
would look like. It would have a ‘my car’ entity with a ‘redness’ attribute—as shown in
Figure 2.3. The entity ‘my car’ clearly refers to my car, as shown in the diagram.

My car’s redness is more of a problem. It cannot point to my car; that is an entity not an
attribute. Apparently, the sign for my car’s redness does not refer to anything. If this is
the case, then the model does not directly map onto things in the real world. In Parts
Three and Four, we will see how resolving fundamental problems, such as these, leads
us to the object paradigm.

Figure 2.3:
‘My car is red’

3.3 Why this semantics problem exists

In everyday life, we quite often come across mysterious unexplained ideas. We find an
unconscious awareness of something coupled with an inability to discuss it. In the case
of business modelling, this is a sure sign of a paradigm. It is a sign of a way of seeing
things that is, by its very nature, so deeply embedded in our minds that we are not con-
scious of it. And we believe so firmly in it that we cannot question it.

Unconscious control is normally an extremely sensible way of dealing with fundamental
situations like this. Situations that we are so sure of that they rarely need conscious
review. If all our actions had to be under our conscious control, it would take ages to
make even the most simple decision. It would be as if the board of directors of a large
company insisted on being involved in every decision, from appointing a new chairman
to buying a box of rubber bands. The only practical way out is to delegate the control of
those situations we are sure of into our unconscious.

The circumstances change when a paradigm needs shifting. The advantages of uncon-
scious control now turn into disadvantages. We can see that here. If we are going to re-
engineer the entity paradigm, we need to know what it is. However, whenever we start
asking about entities, our unconscious kicks into operation and interrupts the question.

MY CAR IS RED

?

LANGUAGE
'MODEL'

ENTITY
MODEL

REAL
WORLD

MY CAR

RED

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Ignoring ‘things in the business’ 27

It tries to stop the question being consciously considered, often by insinuating that it is
irrelevant or obvious. (The Chairman of the Board might use similar tactics to dismiss a
question about buying a box of rubber bands.) This makes it difficult to start the re-engi-
neering.

4 Ignoring ‘things in the business’

This unconscious use of the entity paradigm has led to a tendency to ignore the ‘things
in the business’ and focus on the signs that refer to them. For example, people working
in the computing industry tend to focus on the world of computer information, especially
when they are dealing with computers. As a result, they end up imposing the computer
world’s framework onto the ‘things in the business’.

4.1 Imposing the data–process distinction onto ‘things in the business’

A good example of this is the way they impose its data–process distinction. Computer
technology, unlike paper technology, can both store and process information. So, in the
computer world, the distinction between information that is stored—data—and process-
ing information—process—is an important one. But it is only important in the computer
system. It is irrelevant to the things in the business that the data and process refer to.

Nevertheless, business modellers impose the data–process distinction onto ‘things in
the business’ with disastrous results. We can illustrate this with a simple example. Most
accounting systems have an account movements file. They also have a program that
processes the movement records on that file and posts them to the accounts file, updat-
ing the balance with the movement. In computing terminology, the account movements
and accounts are both data and the accounts movements update program is process. A
model of this part of the system would look something like Figure 2.4.

Figure 2.4:
Account move-
ments system
model

You will find that business models for accounting systems often have a similar shape to
the model in Figure 2.4. Account movements are represented as data and the account
movements update of the accounts as a process. This seems a natural way of model-
ling the business to anyone living in a computer world. It is also the wrong way.

To see this, we need to look at the data–process distinction again. It is a fundamental
distinction in a computer system. Data and process are quite different. In an information
system, data persists over time; whereas, processes do not. They happen. There is a
similar distinction in the real, non-information, world. Things persist over time and
changes do not. When people who live in a computer world model the real world, they
represent it as data and process. They either ignore the real world’s distinction between

Account
Movements

File

Accounts
File

Account
Movements

Update
Program

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
28 Chapter 2 Focusing on the Things in the Business

things and changes or assume that data maps directly onto things and process onto
changes—as shown in Figure 2.5.

Figure 2.5:
Data-process spu-
riously reflecting
things—changes

This is a mistake. The business model, and not the information system, is meant to map
onto the things in the business (the real world). The problem arises because data does
not necessarily map onto things (or process, changes). To see how this causes a prob-
lem consider the account movements again. Ask yourself whether the individual
account movement records represent a thing or a change in the business? The correct
answer is they represent changes. For example, if I pay £100 into my bank account, my
paying in is not a thing but a change. And the change is recorded (represented) by data
in the form of an account movement record. Once we understand this, we no longer
draw the account movement in our business models as data, but as a change. This is
illustrated in Figure 2.6.

Figure 2.6:
Account move-
ments business
model

This example clearly shows that the distinction between data and process in a computer
system is not based on differences between things and changes in the real world. It is
based on whether things in the computer system persist or not. The data-process dis-
tinction and the things—changes distinction have the same underlying basis. But this in
no way implies that data represents things and process represents changes—as sug-
gested incorrectly by Figure 2.5. It turns out that the representing relationship is much
more flexible. As illustrated in Figure 2.7, both data and process can represent either
things or changes.

This provides a simple test of whether a model is representing the business or an infor-
mation system. If the model’s notation classifies changes in the real world as data (as,
for instance, the example in Figure 2.4 classifies accounting movements as things or
data), then it is describing the computer system and not the business. Therefore, it is

Things

INFORMATION SYSTEM REAL WORLD

Process

Data

Changes

BUSINESS MODELINFORMATION SYSTEM REAL WORLD

Account
Movements

Account
Movements

Account
Movements

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Ignoring ‘things in the business’ 29

not a business model. Unfortunately, many so-called business models fall into this cate-
gory.

Figure 2.7:
Data-process cor-
rectly representing
things—changes

These distinctions also highlight one difference between system and business objects.
System objects encapsulate data and process into one object. Business objects, on the
other hand, deal with the things—changes distinction. As we shall see in Part Four,
business objects equivalent of encapsulating data and process are patterns that gener-
alise across the things—changes distinction.

4.2 Ignoring the difference between understanding and operation

This confusion about whether data–process represents things—changes is just part of a
wider confusion between understanding things in the business and the operation of
things in the computer system. In the Prologue we touched on the distinction—on how
business modelling deals with understanding the things in the business; whereas, the
other, later, stages of system building were more concerned with the operation of the
final system.

This distinction between understanding and operation is important for business objects.
We can get an idea of why, by looking at how it affects a notion dear to people working
in O-O re-use. O-O creates an environment where there is more potential for re-use.
That is why O-O systems can be simpler and more compact. This re-use works at both
an operational and an understanding level. Unless we make a clear distinction between
the two levels, we do not take full advantage of O-O’s potential. The following example
shows how we distinguish between the two.

4.3 Distinguishing between operational re-use and generalisation

Everyone, not just O-O system builders, is familiar with operational re-use. We know
what happens when we operationally re-use a pattern or component. We apply it in new
situations. Re-use works in a different way at the understanding level, where it is closely
tied in with generalisation. The following simple modelling example illustrates this.

Assume that we are building a model of a money market trading system and we are
focusing our analysis on $ and £ term deposit placed deals. We notice that these two
types of deals have a similar pattern of settlement. For instance, in both cases, the prin-

Things

INFORMATION SYSTEM BUSINESS MODEL

Process

Data

Changes

Things

REAL WORLD

Changes

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
30 Chapter 2 Focusing on the Things in the Business

cipal is paid away on an agreed date and the principal plus interest is received back
after an agreed term. It seems like a sensible idea to consider whether a copy of the
program code for the $ term deal could be re-used to process £ term deals. This is an
operational approach.

Figure 2.8:
Constructing gen-
eral patterns

On the other hand, we could think about re-use at an understanding level. Then our
chief concern would be finding similarities in the patterns for the two types of things.
Patterns that we could use to generalise. Thinking this way we would construct a more
general term deal pattern that applies to both of the less general types of deal—as
shown in Figure 2.8. We are not really just finding a general pattern. What we have
done is constructed a new more general type of thing in the business—a general term
deal. We can think of this as building a similarity tree of things as illustrated in Figure
2.9.

Figure 2.9:
Identifying similar
types of ‘things in
the business’

It is when we start designing the system that we should shift to an operational view of
re-use. We can ignore the things in the business and talk of the general term deal pat-
tern (or program code) being re-used for both $ and £ term deals.

INDIVIDUAL TERM DEAL PATTERNS

GENERAL TERM DEAL PATTERNS

$ TERM
DEAL

PAY $
PRINCIPAL

RECEIVE $
PRINCIPAL &

INTEREST

£ TERM
DEAL

PAY £
PRINCIPAL

RECEIVE £
PRINCIPAL &

INTEREST

TERM
DEAL

PAY
PRINCIPAL

RECEIVE
PRINCIPAL &

INTEREST

£ TERM
DEALS

TERM
DEAL

$ TERM
DEALS

$ TERM DEALS

£ TERM DEALS

SIMILARITY TREE

refers to

refers to

TERM DEALS refers to

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 What types of things (in the business) do we re-engineer? 31

5 What types of things (in the business) do we re-engineer?

We are already focused on the things in the business. I have found that the re-engineer-
ing to the object paradigm is greatly simplified if we restrict our focus further. All that we
need for the re-engineering can be found in a small group of four types of things. When
re-engineering these four, we re-engineer the whole paradigm. The four are:

• Particular things,
• General types of things,
• Relationships between things, and
• Changes happening to things.

Stretching a point, we call these the four key types of things (changes are not really
things, more a pattern of relationship between things).

At first sight, these four appear simple and appear as if they would not be problematic.
But, by the time we have re-engineered to the object paradigm, we shall realise how
sophisticated our way of seeing has to be to handle them accurately. When we follow
the re-engineering in Parts Three and Four, we will concentrate on how each paradigm
deals with these areas.

5.1 Particular things

Particular things are individual things. For example, see a particular table or a particular
chair—as illustrated in Figure 2.10. These are often called physical bodies and are the
simplest and most basic items in semantics. An information paradigm needs to explain
what makes something particular—what particularity is. This involves more than just
saying particular things are individual, concrete, and tangible. The paradigms we look at
offer very different explanations of what they are.

Figure 2.10:
A particular table
and two particular
chairs

REAL WORLD

Particular
Things

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
32 Chapter 2 Focusing on the Things in the Business

Particular things have one important pattern. We see them as having properties. This
was raised in the earlier example of my car (a particular thing) illustrated in Figure 2.3.
As we said then, an information paradigm needs to explain what my car’s redness is in
the real world.

5.2 General types of things
Figure 2.11:
General types and
particular things

We naturally group particular things into general types. For example, the ‘particular’
tables—illustrated in Figure 2.10—may be grouped along with other ‘particular’ tables
into the general type, tables. These two are quite different. Particular things are nor-
mally concrete and tangible; whereas types, such as table, are normally abstract and
intangible. For example, it does not seem to make sense to ask what the type tables
feels or looks like. Not surprisingly, we naturally distinguish the general from the particu-
lar. We also naturally relate them. For example, when we see a particular table, we nat-
urally classify it as belonging to the general type, tables. This is illustrated in Figure
2.11.

Figure 2.12:
More and less gen-
eral types

General types also have a common pattern relating one type to another, the ‘more gen-
eral’ pattern. For example, the general type, furniture, is ‘more general’ than the general

Tables

REAL WORLD

General
Types

Particular
Things

Furniture

Tables

REAL WORLD

More
General

Less
GeneralGeneral

Types

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 What types of things (in the business) do we re-engineer? 33

type chairs. An information paradigm needs to explain what this more general pattern—
illustrated in Figure 2.12—is in the real world.

5.3 Relationships between things

The next type of object is relationships. People have relationships—for instance the two
‘particular things’, Queen Elizabeth and Prince Charles, are related: Queen Elizabeth is
the mother of Prince Charles. This is an example of a blood relationship. There are
other non-blood relationships, for instance a particular chair may be at a particular desk.

Figure 2.13:
Two examples of
relationships

These two examples (illustrated in Figure 2.13) are relationships between particular
things—what might be called particular relationships. There are also relationships
between general types. For example, we can generalise the ‘Queen Elizabeth is the
mother of Prince Charles’ relationship to ‘(the type) mother can be a mother of (the
type) children’. These are what might be called general relationships. Seen this way, the
particular general pattern applies not only to things and types but also to relationships—
as illustrated in Figure 2.14. All this needs to be explained by an information paradigm.

Figure 2.14:
General and par-
ticular relation-
ships

REAL WORLD

Relation-
ships

has a

QUEEN
ELIZABETH

PRINCE
CHARLES

is the
mother of

Mothers Children
is the

mother of

Queen
Elizabeth

Prince
Charles

is the
mother of

REAL WORLD

General
Relation-

ships

Particular
Relation-

ships

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
34 Chapter 2 Focusing on the Things in the Business

5.4 Changes happening to things

At the beginning of the chapter, when looking at the data–process distinction, we intro-
duced the things–changes distinction. This provides us with the last type of object:
changes. As we said earlier, what distinguishes changes from things are that things per-
sist through time; whereas, changes do not, they happen.

A strong pattern connects changes to things: changes happen to things. Consider for
example, a change such as a green tomato turning red. The change (turning red) hap-
pens to the tomato (a particular thing). We readily appreciate that the things and
changes are two very different types of objects. However, an information paradigm has
to give a clear and consistent explanation of what both these objects are and why they
are different.

Changes, like things, also have a general–particular pattern. For instance, the change
in our example, a particular green tomato turning red, can be generalised to a general
type of change, green tomatoes turning red. An information paradigm should explain
why changes have the same pattern and what it is.

6 Our starting point—the entity paradigm

Our starting point for the re-engineering is the entity paradigm. In Part Two, we see how
it and the substance paradigm on which it is based deal with these four key types of
things. The substance paradigm was developed by the Ancient Greek Aristotle in the
4th century BC. Some people might find it odd that we currently use an entity paradigm
based on something so ancient as the substance paradigm. But, on reflection, however,
one should realise that, for practical everyday use, the age of a paradigm is not rele-
vant. The real issue is its suitability for the job. This is why it makes sense for an engi-
neering discipline to use a scientifically ‘out-of-date’ paradigm.

6.1 Engineers often use scientifically ‘out-of-date’ paradigms

Once we start looking, we can find many other examples of ‘out-of-date’ paradigms. We
soon recollect that civil and mechanical engineers still use ‘out-dated’ Newtonian phys-
ics although its successor, quantum-mechanical physics, has been available for almost
a hundred years. We may be less aware that ship’s officers are taught to navigate using
a millennia old paradigm of a fixed earth and moving star sphere—one that was super-
seded over four hundred years ago.

We use these old paradigms because, even though the scientist’s latest paradigm may
be the most accurate, it is not necessarily the most appropriate for everyday tasks.
Unlike scientists, engineers faced with a task have to make a practical decision. That is
why they try to choose the most suitable paradigm for the job, no matter how ancient or
out-of-date. Information engineers picked the entity paradigm because it was the most
appropriate for paper and ink technology. The issue we are facing is that they then
imported it wholesale onto computer technology.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Arriving at an object semantics for ‘things in the business’ 35

7 Arriving at an object semantics for ‘things in the business’

Given that the substance paradigm is so old, it should come as no surprise that it is sci-
entifically ‘out-of-date. ‘Information scientists’ have re-engineered a number of new par-
adigms in the two millennia since it was first formalised. In fact, ‘information scientists’
were developing the shift to the object paradigm in the first half of this century, well
before electronic computers were even invented.

7.1 The separate evolution of information semantics

The easiest way to think about these developments is in terms of the three elements of
an information paradigm mentioned at the beginning of this chapter:

• Information technology,
• Syntax, and
• Semantics.

Until computers were developed, paper and ink were the leading information technol-
ogy. And so the entity paradigm was rightly selected as the most practical option for
working ‘information engineers’. However, at the same time, the world’s best thinkers
from a variety of fields have been developing semantics. Over time, they have evolved
increasingly sophisticated systems. Even though these systems often remained aca-
demic, without a practical application, this did not stop them from developing them fur-
ther. With the development of computing, we have a technology that makes the
‘scientifically’ advanced systems of semantics a practical proposition.

It is not unusual for people to develop ideas ahead of their times’ technology. A
well-known example is Leonardo da Vinci. In the 15th century, he drew designs for a
helicopter—hundreds of years before the technology needed to build one was available.
It was a good idea that could not be put into practice because of the state of technology.
In the same way, when object semantics was developed, it was far too rich to work on
the then current paper and ink technology.

7.2 Following the semantic re-engineering route

Thinkers have had a long time to develop their ‘scientifically’ advanced semantics. As
you might expect, semantics has moved a long way in the two millennia since the sub-
stance paradigm was formalised—in paradigm-speak, there have been a number of
shifts. We follow these in Parts Three and Four.

Following in these thinkers’ footsteps is a much easier way of re-engineering than start-
ing from scratch. The shifts have already been worked out for us. All we have to do is
understand them. This is just as well, because the computing industry has no real expe-
rience of re-engineering or developing semantics.

As our goal here is understanding the object paradigm, rather than the history of
semantics, we take a drastically shortened version of the historical path. We just look at

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
36 Chapter 2 Focusing on the Things in the Business

the semantics of one intermediate paradigm in the evolution to object semantics—a
kind of halfway house. This is the logical paradigm.

8 Re-engineering the ‘things in the business’

In this chapter we have focused in on the core areas we need to re-engineer. We first
focused on the ‘things in the business’.

We recognised that system builders currently tend to ignore these ‘things in the busi-
ness’. We saw the undue importance they attached to the data–process distinction,
imposing it on the things in the business—confusing it with the things–changes distinc-
tion.

We saw that this was part of a wider confusion between understanding the ‘things in the
business’ and the operation of things in the computer system. As an example, we
looked at how re-use—a notion dear to O-O people—worked at the operational and
understanding levels.

We then refined our focus, identifying the types of things we need to re-engineer to
arrive at the object paradigm. We identified four key types of things. We then deter-
mined how we were going to arrive at an object semantics. We learned that business
entities had already been re-engineered into objects—outside computing. We do not
need to re-engineer it from scratch, but can follow in the footsteps of the original re-
engineers. We also briefly touched on the origin of the entity paradigm in the Ancient
Greek substance paradigm. This is the starting point for our journey to business objects.
We stop off at one intermediate paradigm on the way, the logical paradigm.

9 The next part

In the next part of the book (Part Two), we clarify the starting point of our journey to the
object paradigm. There, we unearth the entity paradigm’s semantics—finding it in its ori-
gins in the substance paradigm.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part Two
Our Starting Point—The Entity

Paradigm

Chapter 3 What Is the Entity Paradigm?

Chapter 4 The Substance Paradigm’s Semantics

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 3
What Is the Entity Paradigm?

1 Introduction

2 The entity paradigm’s fundamental particles

3 The entity framework and its (re-)use of patterns

4 The entity paradigm and the file-record paradigm

5 Mapping entities and attributes onto files and records

6 The substance paradigm’s secondary hierarchy

7 Simplifying the substance paradigm’s treatment of relationships

8 Our current way of seeing stored information

9 The next chapter

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
40 Chapter 3 What Is the Entity Paradigm?

1 Introduction
In Part One, we looked at our strategy for re-engineering the entity foundations of infor-
mation. Here in Part Two, we examine our starting point—the entity paradigm—concen-
trating on the four key types of things we identified in the last chapter. Then in Parts
Three and Four we will follow the entity paradigm’s evolution into the object paradigm.

The entity paradigm is what most computer systems’ information is based on. Because
our aim is to re-engineer the business paradigms embedded in our existing computer
systems, it is a natural starting point. Most people who work with it, instinctively recog-
nise that the entity paradigm is a tool for doing things rather than understanding them.
To use a distinction raised in the Prologue, it works at an operational rather than an
understanding level.

The entity paradigm is a simplified version of a powerful paradigm developed by the
Ancient Greek Aristotle, which we call the substance paradigm. It is a good approxima-
tion to the way most of us see the world. It was simplified into the entity paradigm to
work more effectively with paper and ink technology.

In the last chapter, we noted that most of us cannot explain what an entity is. What we
do here is drag the entity paradigm up to the surface, making ourselves conscious of it.
Sometimes people are surprised when they first see it in the cold light of day—some
even find it difficult to accept that it is what they have been working with.

We start this chapter by looking at the entity paradigm. We look at its fundamental parti-
cles, the patterns of re-use it enables, and how it relates to paper and computer infor-
mation. Then we look at the elements of the substance paradigm that were eliminated
when the entity paradigm was simplified, and why they were removed. This gives us an
insight into the nature of entity-oriented systems. In the next chapter, we turn our full
attention onto the substance paradigm, particularly its semantics.

2 The entity paradigm’s fundamental particles

We start by looking at the entity paradigm’s fundamental particles:
• The entity, and
• The attribute.

The entity particle is more fundamental, so we start with it.

2.1 Individual entities

We naturally divide the world into concrete particular things. When we look around a
room, our eyes receive a continuous stream of data. We unconsciously analyse this
stream and consciously see chairs, tables and so on. These are individual entities.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The entity paradigm’s fundamental particles 41

2.2 Entity types

Individual entities are not the only type of entity. We also naturally group together indi-
vidual entities that are, in some sense, the same. We then say that the entities in the
group all belong to the same entity type. Individual entities naturally belong to entity
types. They also always belong to one. For instance, we might catch a fleeting glimpse
of something (it may be a fox or a dog) on a dark and foggy night. Even though we can-
not say what entity type the thing belongs to, it still has one—as shown in Figure 3.1.

Figure 3.1:
Individual entities
naturally belong to
entity types

2.3 Attributes belonging to entities

Attributes have the same two-tier pattern as entities. Just as there are individual entities
and entity types, so there are:

• Individual attributes, and
• Attribute types.

2.3.1 Individual attributes

We naturally see that individual entities have attributes (also called properties or quali-
ties). Someone looking at my car naturally notices it is red (in other words, it has a red
attribute/property/quality). We always see individual attributes belonging to individual
entities; this is one of their inherent features. Notice how difficult it is to see the particu-
lar red property existing on its own (out in the real world) with no entity attached to it—as
illustrated by Figure 3.1. This seems impossible. It is important to remember that we
are talking about individual attributes out in the real world. We can, of course, imagine
the general idea of red on its own; but that is in our head.

If we think about it, we can see that the individual attributes determine how an entity
appears. All of my car’s appearance is based on its properties, its individual attributes. If

CUP

MY CUP

PEN

(SEEN ON A
DARK AND

FOGGY NIGHT)

IN
D

IV
ID

U
A

L
E
N

T
IT

IE
S

E
N

T
IT

Y
T

Y
P

E
S

CURRENTLY
UNKNOWN

MY PEN

?

THING

T
Y

P
E

O
F

T
Y

P
E

O
F

T
Y

P
E

O
F

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
42 Chapter 3 What Is the Entity Paradigm?

my car looks red, then it has the property of being red—it has a red attribute. The entity
itself is not red, being red is the function of the individual red attribute.

Figure 3.1:
Individual
attributes always
belong to an indi-
vidual entity

2.3.2 Attribute types

The relationship between individual attributes and attribute types is similar to that
between individual entities and entity types. Every individual attribute belongs to an
attribute type and an attribute type can have a number of individual attributes. Also the
relationship between an attribute type and its entity type is similar to the relationship
between an individual entity and its individual attributes. This is shown schematically in
Figure 3.2. An example using my red car is given in Figure 3.3.

Figure 3.2:
Entities and
attributes

RED

MY
CAR

RED

INDIVIDUAL
ENTITY

I
N
D
I
V
I
D
U
A
L

T
Y
P
E

ENTITY ATTRIBUTE

ot sgnol eb

ot sgnol eb

f
o

e
p

y
t

f
o

e
p

y
t

ENTITY
TYPE

INDIVIDUAL
ATTRIBUTE

ATTRIBUTE
TYPE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The entity framework and its (re-)use of patterns 43

3 The entity framework and its (re-)use of patterns

The entity paradigm is a good example of how a framework enables the (re-)use of gen-
eral patterns.

Figure 3.3:
My red car

3.1 Re-use working down the entity framework’s hierarchy

Re-use works its way down the entity framework. The general entity and attribute pat-
terns are used to construct all the patterns at the type level. These are then used (and
so their embedded general patterns re-used) to construct the individual level patterns.

We can see this happening in Figure 3.4. There, the general entity-attribute pattern pro-
vides a framework for the staff member entity type patterns. This in turn provides a
framework for the individual staff member patterns.

Figure 3.4:
The entity para-
digm’s general
structure

Figure 3.5 illustrates how re-use operates at the general level. We can see that the
entity paradigm does not determine what the actual entity and attribute types are, just
the framework in which they live. The various entity and attribute types work in a similar
way. They do not determine what the actual entities and attributes are, just their frame-
work.

IN
D

IV
ID

U
A

L
L
E
V

E
L

T
Y

P
E

L
E
V

E
L

CAR

CAR LENGTH

CAR COLOUR

MY CAR

3.5 METRES

RED

T
Y

P
E

IN
D

IV
-

ID
U

A
L

Staff Member

Position DepartmentAge

Gordon Beckett

Operations Manager Management55

Margaret Blair

Managing Director Management42

G
E
N

E
R

A
L Entity

PropertiesPropertiesAttributes

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
44 Chapter 3 What Is the Entity Paradigm?

Figure 3.5:
Re-using the gen-
eral entity-
attribute pattern

This type of framework derives its power from the repeated use (and re-use) of a pattern
from a higher level at a lower level. For example, the general entity-attribute pattern is
repeatedly used in the construction of entity types and their attribute types. There is a
similar pattern of re-use between the type and individual levels. An individual entity and
its attributes are constructed using the patterns from its entity type and associated
attribute types. This usually means that the patterns for the entity type and its associ-
ated attribute types are re-used many times. The general entity-attribute pattern is
embedded in the entity type and attribute type patterns. So, when the individual entities
and their attributes are constructed using type level patterns, the general pattern is also
implicitly used. In this way it pervades all levels of the framework.

The entity–attribute pattern is generative. As well as applying to the existing framework,
the general pattern can be used to ‘generate’, when required, new type and individual
level patterns. Type level patterns are generative as well; they can be used to ‘generate’
new individual level patterns.

It might be easier to see this with a simple example. Assume that I have constructed a
car entity type pattern and used it to construct an individual entity pattern for my car.
Also assume that I have constructed a car colour attribute type for the entity type and,
based on this pattern, a red attribute at the individual level for the ‘my car entity’. If I now
see John’s car, I can generate its pattern from the existing framework. I can construct an
individual entity for it, using the car entity type and car colour attribute type patterns—as
shown in Figure 3.6. When I use the car entity pattern to construct the entity John’s car,
I also automatically commit myself to constructing an attribute using the car colour
attribute type. Notice also that ‘John’s car’ entity inherits the general entity–attribute pat-
tern through the car entity type pattern.

We will appreciate the generative nature of the type level better if we consider what
would have happened if there had been no middle type level in the framework, just the
top general entity-attribute level. Without the type level, whenever we saw a car for the
first time we would have to regard it as a unique entity with its own variety of individual
attributes. This means we would have to go through the kind of analysis that we do for
completely new and unknown types of things. So, when we see John’s car for the first
time, we would have to construct its entity and attributes without the guidance of a car
entity type. We would not know that it was a car nor that it has a colour attribute. This
would not only make life complicated, but very time consuming.

G
E
N

E
R

A
L

T
Y

P
E

Staff Member Car

Position DepartmentAge LengthColour

Entity

PropertiesPropertiesAttributes

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The entity paradigm and the file-record paradigm 45

Figure 3.6:
The generative
type level

4 The entity paradigm and the file-record paradigm

The entity paradigm is closely related to what we will call the file-record paradigm.

4.1 Where does the file-record paradigm come from?

Computer users often talk about information being stored in files and records, rather
than entities and attributes. However, the terms, ‘file’ and ‘record’, are rooted in paper
and ink technology. Well before the invention of computer technology, records were
made on pieces of paper and kept in files.

These paper records and files were based on the way in which information is naturally
stored on paper in rows and columns. We distinguish paper’s framework of rows and
columns from computing’s files and records by calling it the tables paradigm. These par-

JOHN'S CARMY CAR

JOHN'S
CAR

IN
D

IV
ID

U
A

L
L
E
V

E
L

T
Y

P
E

L
E
V

E
L

RED

GREEN

CAR

CAR COLOUR

MY CAR

RED GREEN

u
s
e

re-use

Tables paradigm File–record paradigm Entity paradigm Example

Rows Computer record Individual entity My car

Element Computer field Individual attribute Red

Table Computer file Entity type Car

Column Computer field type Attribute type Car colour

Table 3.1: Closely linked fundamental particles

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
46 Chapter 3 What Is the Entity Paradigm?

adigms are all closely linked. For example, their fundamental particles all map directly
onto one another—as shown by Table 3.1.

4.2 Reinforcing the entity paradigm

Computer-literate people’s training in file and record patterns reinforces the entity para-
digm, and vice versa. For example, it appears to make no sense to talk about an individ-
ual field existing apart from its record—as illustrated in Figure 3.7. Just as it makes no
sense to talk about individual attributes existing without their individual entities (shown
in Figure 3.1). What could such a field or attribute be?

Figure 3.7:
An individual com-
puter field without
its computer
record

5 Mapping entities and attributes onto files and records

Figure 3.8:
Physically imple-
menting the entity
paradigm

These intimate links between the paradigms (shown in Table 3.1) lead many system
builders to see computing’s file-record paradigm as a physical implementation of the
entity paradigm—as illustrated in Figure 3.8.

RECORD

FIELD FIELD

CAR

RED

COLOUR COLOUR

I
N
D
I
V
I
D
U
A
L

R
E
C
O
R
D

T
Y
P
E

F
I
L
E

ENTITY COMPUTER

MY
CAR

CAR

MY CAR

RED

MAP

MAP

MAP

MAP

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Mapping entities and attributes onto files and records 47

5.1 Staff example

This apparently close mapping leads many people to the false assumption that files and
records directly reflect the real world’s entities and attributes. This simple staff example
shows how wrong this assumption can be.

5.1.1 Two incompatible entity formats

Consider the two lists in Table 3.2, one of salespersons and the other of account man-
agers. They could equally well be combined into one staff list – as shown in Table 3.3.
Let’s assume that these two lists are from computer systems whose records and fields
directly reflect entities and attributes. We can then work out what the systems’ entity for-
mats are and, by implication, the entities and attributes they reflect. The formats are
shown in Figure 3.9

Figure 3.9:
The two assumed
entity formats

As the business only has one entity structure, it cannot be reflected by both the entity
formats in Figure 3.9. Only one of them can be ‘right’. If we compare the formats of the
two systems, then we immediately see a major difference. In the first system, there are
signs for two entity types, Salesperson and Account Manager. Whereas, in the second
format, there is only one entity type sign, Staff. Which of these entity type signs actually
refer to real entity types in the business? If the business has a Staff entity type, then the

Salespersons Account Managers

Surname First name Middle initials Surname First name Middle initials

Bottomley Margaret V.G. Beckett Gordon O.B.

Clarke Michael L. Blair Margaret J.

Heseltine Kenneth J. Brown Claire F.L.

Howard Cecil S.F.A. Short Tony L.

Thatcher Virginia J.K. Thatcher Virginia J.K.

Table 3.2: Salespersons and Account Managers list

SALES-
PERSON

STAFF

ACCOUNT
MANAGER

ACCOUNT
MANAGER?

YES

YES

NO

NO

SURNAME

FIRST NAME

SALESPERSON

MIDDLE INITIALS

SURNAME

FIRST NAME

MIDDLE INITIALS

SURNAME

FIRST NAME

MIDDLE INITIALS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
48 Chapter 3 What Is the Entity Paradigm?

first format is ‘wrong’; its two entity type signs do not reflect the business—as shown in
Figure 3.10.

If Salesperson and Account Manager are entity types then the Staff format—shown in
Figure 3.11—is ‘wrong’.

There is another contradiction in Figure 3.9. Look at it again, and compare the two sys-
tems’ entity formats. You may notice that, in the first system, Salesperson and Account
Manager are signed as entity types; but, in the second system, they are signed as
attribute types (the Salesperson and Account Manager indicators). If the entity para-
digm reflects the structure of the world, then the world divides irrevocably into entities
and attributes. Something cannot be both an entity and an attribute. However, here we
have two systems; one with Salesperson signed as an entity type and the other with it
signed as an attribute type. Which type is it—entity or attribute?

Figure 3.10:
Staff world view

Surname First name Middle initials Salesperson
indicator

Account Manager
indicator

Beckett Gordon O.B. Yes

Blair Margaret J. Yes

Bottomley Margaret V.G. Yes

Brown Claire F.L. Yes

Clarke Michael L. Yes

Heseltine Kenneth J. Yes

Howard Cecil S.F.A. Yes

Short Tony L. Yes

Thatcher Virginia J.K. Yes Yes

Table 3.3: Staff List

INFORMATION SYSTEMREAL WORLD

STAFF

refers t o

refers to

refers to

?

?

SALES-
PERSON

STAFF

ACCOUNT
MANAGER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 The substance paradigm’s secondary hierarchy 49

Figure 3.11:
Salesperson and
Account Manager’s
world view

5.1.2 Not ‘wrong’ but different objectives

It turns out that neither format is ‘wrong’. What is wrong is our assumption that a compu-
ter system’s files and records necessarily reflect the world’s entities and attributes.
What dictates the structure of these files and records is not the world they describe but
what we want to do with them in our system. The structures of the two systems are dif-
ferent because they serve different purposes. For example, if we wanted to send the
same letter to all staff, it would be easier to use the list from the staff system. If we were
sending different letters to Salespersons and Account Managers, it would be easier to
use the two lists from the other system.

This example shows that the decision on whether to use a record or a field in a compu-
ter system does not necessarily involve distinguishing between entities and attributes in
the outside world. It is more about different ways of handling the data inside the informa-
tion system.

6 The substance paradigm’s secondary hierarchy

When the substance paradigm was simplified into the entity paradigm, the structurally
key secondary hierarchy was eliminated. This is part of the reason why the staff exam-
ple’s files and records do not map directly onto the outside world; and why the entity
paradigm focuses on the data inside information systems rather than the things in the
business. We now look at the substance paradigm, particularly its secondary hierarchy.
We see how it was simplified and how the simplification changes what we see.

6.1 The substance paradigm

The substance paradigm is ancient. It was constructed by the Ancient Greek Aristotle in
the 4th century BC and subsequently developed by his followers. It is, like much of Aris-

INFORMATION SYSTEMREAL WORLD

SALES-
PERSON

ACCOUNT
MANAGER

refers to

refers to

refers to

?

SALES-
PERSON

STAFF

ACCOUNT
MANAGER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
50 Chapter 3 What Is the Entity Paradigm?

totle’s work, a rationalisation of people’s intuitive ideas. These ideas are still with us
today. Most people see the world through the eyes of the substance paradigm.

Figure 3.12:
The substance
particle corre-
sponds to the
entity particle

The substance and entity paradigms share similar fundamental particles. The sub-
stance paradigm’s particles are substances and attributes, where substance corre-
sponds to entity (as shown in Figure 3.12) and attribute, not surprisingly, to attribute.
(Students of Aristotle use the words ‘substance’ and ‘entity’ almost interchangeably;
however, we use ‘substance’ for Aristotle’s paradigm and ‘entity’ for the entity para-
digm.) As we shall see in the next section, the main difference is that, at the secondary
level (the substance paradigm’s name for the type level), the substance paradigm is
more powerful.

6.2 The secondary level hierarchy

We now look at the part of the substance paradigm that was ‘simplified’ out of the entity
paradigm—its secondary level hierarchy. This can be divided into two interlinked hierar-
chies:

• The secondary substance hierarchy, and
• The secondary attribute hierarchy.

6.2.1 Secondary substance hierarchy

We use my car to illustrate what the secondary substance hierarchy is. My car is a car—
in substance-speak, my car’s primary substance has a car secondary substance. Cars
are a type of vehicle—vans are another type. Similarly, vehicles are a type of trans-
port—aircraft and ships are other types. From a substance paradigm viewpoint these
types are all secondary substances and the paradigm recognises that they form a hier-
archy (shown in Figure 3.13). In the entity paradigm, there is no hierarchy and entity
types are restricted to a single level—also indicated in Figure 3.13.

P
R
I
M
A
R
Y

S
E
C
O
N
D
A
R
Y

SUBSTANCE ENTITY

I
N
D
I
V
I
D
U
A
L

T
Y
P
E

INDIVIDUAL
ENTITY

ENTITY
TYPE

SECONDARY
SUBSTANCE

PRIMARY
SUBSTANCE

MAP

MAP

MAP

f
o

e
p

y
t

f
o

e
p

y
t

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 The substance paradigm’s secondary hierarchy 51

Figure 3.13:
A substance hier-
archy

6.2.2 Secondary attribute hierarchy

It is not only secondary substances that have a hierarchy, so do secondary attributes.
My car is red and cars are coloured. In substance-speak, my car’s primary substance
has a red primary attribute and secondary car substance has a colour attribute. In this
respect, the substance and entity paradigm are similar. But other substances are red
(apples, fire engines, etc.), so there are other red primary attributes and these red
attributes have something in common, they are all red. In the substance paradigm this is
explained by having an independent red secondary attribute.

Similarly, other secondary substances (as well as cars) are coloured; so there is an
independent colour attribute that has the independent red attribute (and the other indi-
vidual colour attributes) as part of it. This results in the framework shown in Figure 3.14.
My car’s red attribute can be called its colour attribute—it is inherited from the second-
ary level car’s colour attribute. We then say the value of my car’s colour attribute is red.
The red-colour relationship, independent of my car, is reflected by red ‘belonging to’ col-
our in the secondary attribute hierarchy.

TRANS-
PORT

CAR VAN AIRCRAFT

R
E
S
T

R
IC

T
E
D

E
N

T
IT

Y
T

Y
P

E
L
E
V

E
L

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

S
U

B
S
T
A

N
C

E
H

IE
R

A
R

C
H

Y

MY CAR

VEHICLE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
52 Chapter 3 What Is the Entity Paradigm?

Figure 3.14:
Substance–
attribute frame-
work

The schema of the relationships between the substance paradigm’s particles in Figure
3.15 shows these secondary level hierarchies. Compare this with Figure 3.2 and you
can clearly see that the substance paradigm has more structure at the secondary level
than the entity paradigm. This structure is what was removed by the entity paradigm’s
simplification.

6.3 The substance paradigm’s solution to the staff example

We can use the earlier staff example to illustrate the substance paradigm’s superior
semantics. We can show how its secondary hierarchy enables it to reflect the real world
more accurately.

When we look at the staff example through substance spectacles, we discover a more
consistent system. In this, individual staff (such as Margaret Bottomley) are primary
substances and Staff, Salesperson and Account Manager are secondary substances.
There is a substance hierarchy in which the Salesperson and Account Manager sub-
stances both ‘belong to’ the Staff substance as shown in Figure 3.16. When the entity
paradigm was simplified, hierarchies such as these were flattened, making it difficult to
reflect the real world accurately and consistently.

R
E
S
T

R
IC

T
E
D

E
N

T
IT

Y
-A

T
T

R
IB

U
T

E
T

Y
P

E
L
E
V

E
L

S
E
C

O
N

D
A

R
Y

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

RED GREEN

COLOUR

TRANS-
PORT

CAR

P
R

IM
A

R
Y

L
E
V

E
L

MY CAR

VEHICLE

RED

GREEN

COLOUR

RED

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 The substance paradigm’s secondary hierarchy 53

Figure 3.15:
Schema of sub-
stance paradigm’s
particles and levels

Figure 3.16:
Aristotelian staff
hierarchy

6.4 Why the substance paradigm was simplified

Why did the secondary hierarchy have to be simplified? When the entity paradigm was
being developed, paper and ink were the prevailing information technology. Its two-
dimensional structure could not handle the more sophisticated structure of the sub-
stance paradigm. This had to be simplified, so that it could operate within paper and ink
technology’s rows and columns.

The entity paradigm developed, within the constraints of paper and ink technology, in
response to operational needs. It did not develop in the same rational way as the sub-
stance paradigm. There was, as far as we know, no-one working out what the entity par-
adigm’s fundamental particles were and what they meant. However, as most people see
the world through the substance paradigm, it was a natural starting point for the many

S
E
C
O
N
D
A
R
Y

SUBSTANCE

belongs to

PRIMARY
SUBSTANCE

ATTRIBUTE

PRIMARY
ATTRIBUTE

SECONDARY
ATTRIBUTE

peyt ofrep

us

P
R
I
M
A
R
Y

f
o

e
p

y
t

peyt or fep

us

SECONDARY
SUBSTANCE

f
o

e
p

y
t

belongs to

SALES-
PERSON

STAFF

ACCOUNT
MANAGER

refers t o

refers to

refers to

SALES-
PERSON

STAFF

ACCOUNT
MANAGER

INFORMATION SYSTEMREAL WORLD

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
54 Chapter 3 What Is the Entity Paradigm?

minds that contributed to the entity paradigm’s development. The substance paradigm
was too sophisticated for paper and ink technology and so the question was—how to
simplify it?

6.5 How the substance paradigm’s particles were simplified

The entity paradigm has a basic structure of three levels as shown in Figure 3.4. This
results in a framework restricted to a flat entity type level as shown on the right-hand
side of Figure 3.17. Compare this with secondary substance’s unconstrained multiple-
level hierarchy on the left-hand side of the figure.

Figure 3.17 makes it clear that it is really only the substance paradigm’s secondary
level that needed simplifying. Its primary level can be directly translated into the individ-
ual entity level. Whereas, its secondary level hierarchy cannot be directly translated into
the flat entity type level. To fit the substance paradigm into the entity paradigm’s frame-
work shape, its secondary level—both substance and attribute—has to be flattened
down to a single level.

Figure 3.17:
The paradigms’
different struc-
tures

\

6.5.1 Selecting the natural type level entity

For secondary substances, this means that we have to select a single layer, slicing
through the hierarchy, to stand as entity types. We can illustrate this with an example.
Consider the secondary hierarchy in Figure 3.18. It has a band across it indicating the
selected layer of substances. Figure 3.19 shows this layer transformed into entity
types. The substances above the selected layer in the hierarchy disappear, while the
substances below the selected layer in the hierarchy are transmuted into attributes. A
similar transmutation happened in the staff example. The Account Manager and Sales-
person substance in Figure 3.16 are flattened into attributes in the staff entity system in
Figure 3.9.

R
E
S
T

R
IC

T
E
D

E
N

T
IT

Y
T

Y
P

E
L
E
V

E
L

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

S
U

B
S
T
A

N
C

E
H

IE
R

A
R

C
H

Y

SUBSTANCE PARADIGM ENTITY PARADIGM

SECONDARY
SUBSTANCE
#A

SECONDARY
SUBSTANCE
#C

ENTITY
TYPE
#2

SECONDARY
SUBSTANCE
#D

ENTITY
TYPE
#3

SECONDARY
SUBSTANCE
#B

ENTITY
TYPE
#1

PRIMARY
SUBSTANCE
#1

INDIVIDUAL
ENTITY
#1

PRIMARY
SUBSTANCE
#2

INDIVIDUAL
ENTITY
#2

PRIMARY
SUBSTANCE
#3

INDIVIDUAL
ENTITY
#3

PRIMARY
SUBSTANCE
#4

INDIVIDUAL
ENTITY
#4

P
R

IM
A

R
Y

L
E
V

E
L

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 The substance paradigm’s secondary hierarchy 55

Figure 3.18:
Selecting a sec-
ondary substance
layer

Figure 3.19:
The transformed
entities

Figure 3.20:
Flattening the sec-
ondary attribute
hierarchy

Selecting a layer in the hierarchy is not as unnatural as it may look. Psychologists have
shown that we immediately allocate a thing to a natural level of ‘substance’. For
instance, most people immediately classify a robin in their garden as a bird rather than
the lower level robin or higher level animal. However, this ‘natural’ level is not a feature
of the world. It can vary from person to person. For instance, a bird watcher, unlike other

CAR SOCK BIRDVAN SHIRT DOG

HATCH
BACK

THERMAL
SOCK

ROBINTRANSIT
VAN

DRESS
SHIRT

COLLIE

VEHICLE CLOTHES MAMMAL

Selected
Entity
Layer

CAR SOCK BIRDVAN SHIRT DOG

HATCH
BACK

TRANSIT
VAN

THERMAL
SOCK

DRESS
SHIRT

ROBIN COLLIE

Selected
Entity
Layer

GREENRED

COLOUR

QUALITY

CAR

VEHICLE

COLOUR

COLOUR

SOCK

CLOTHES

COLOUR

COLOUR

E
N

T
IT

Y
S
U

B
S
T
A

N
C

E

Duplication

GREEN

RED

SOCK

COLOUR

GREEN

RED

CAR

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
56 Chapter 3 What Is the Entity Paradigm?

people, is more likely to immediately classify a robin in his or her garden as a robin
(maybe even the variety of robin) rather than a bird.

6.5.2 Making attributes dependent

The natural level of classification helps us to decide how to flatten the secondary sub-
stance hierarchy into an entity type layer. It is also a vital factor in the design of good
user interfaces. Items presented to users on a screen need to be at their ‘natural’ level.

It is not just the secondary substance hierarchy we need to flatten; we also need to flat-
ten the secondary attribute hierarchy to fit it into the entity structure. Not only do we
have to flatten it, but we also have to make it completely dependent on its correspond-
ing entity type. We can see how this happens in the colour hierarchy example shown in
Figure 3.20.

You may have noticed that the dependent attributes belonging to substances above the
selected layer, such as vehicle’s colour in the example, disappear along with their sub-
stances. Notice also that the independent colour attribute hierarchy disappears com-
pletely. This means that it can no longer be re-used across the car and sock entity
types. In this example, the simplification creates a need for two dependent instances of
each colour attribute—one for each entity. This is an example of a general constraint in
the entity paradigm. When an attribute has a fixed range of values—as the colour
attribute does here—the substance paradigm’s independent attribute hierarchy has to
be re-constructed anew as dependent attributes for each of the entity types. This signif-
icantly reduces the re-use potential.

7 Simplifying the substance paradigm’s treatment of relationships

It is not just the substance paradigm’s secondary hierarchy that was simplified away. So
was part of its treatment of relationships—one of the four key types of things we identi-
fied in the last chapter. We now look at how the substance paradigm handles relation-
ships and how this was simplified for the entity paradigm.

7.1 Aristotle’s relations and co-relations

In the substance paradigm there are two particles—substances and attributes. Every-
thing has to be one or another of these (or some combination). So we have to use one
or another particle to describe relationships such as:

Queen Elizabeth is the mother of Prince Charles

The only practical solution, within the paradigm, is to treat relationships as relational
attributes. As ‘is the mother of Prince Charles’ is the predicate of the sentence, it is an
attribute. As ‘Queen Elizabeth’ is the subject, it is the substance that the attribute
belongs to.

However this relationship can also be described as:

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Simplifying the substance paradigm’s treatment of relationships 57

Prince Charles is the son of Queen Elizabeth

This and the earlier sentence describe the same relationship. But, a subject–predicate
analysis of this sentence gives a different result. In this case, as ‘is the son of Queen
Elizabeth’ is the predicate of the sentence, it is an attribute. As ‘Prince Charles’ is the
subject, it is the substance that the attribute belongs to. We appear to have a problem—
two different relational attributes for the same relationship.

Aristotle was well aware of this problem. In Categories, he wrote:

Let us now turn to Relation. We call a thing relative, when it is said to be such as it is
from being of some other thing or, if not, from its being related to something in some
other way. Thus ‘the greater’ is said to be greater by reference to something outside it.
For, indeed, when we call a thing ‘greater’ we mean by that greater than something. ‘The
double’ is called what it is from its being the double of something. For ‘double’ means
double of something. And so with all terms of that kind.

His ‘solution’ to this problem was facile. He suggested that we give each relational
attribute a co-relational or correlational attribute (also called a correlative):

All relatives have their correlatives. ‘Slave’ means the slave of a master, and ‘master’ in
turn implies slave. ‘Double’ means double of its half, just as ‘half’ means half of its dou-
ble. By ‘greater’, again, we mean greater than this or that thing which is less, by ‘less’
less than that which is greater. So it is with all relative terms.

In our ‘Queen Elizabeth is the mother of Prince Charles’ example, the correlation of the
‘mother of’ attribute is the ‘son of’ attribute. This is illustrated in Figure 3.21.

Figure 3.21:
Relational and cor-
relational
attributes

We will briefly look at correlational attributes again in Chapter 5, when we re-engineer
the relational attribute pattern into its logical counterpart.

7.2 The entity paradigm’s simplified treatment of relations

Aristotle was concerned with seeing the real world clearly and accurately. The entity
paradigm is more concerned with effectively implementing information in paper and ink
technology. This gave it a problem with relational attributes having correlational

P
R

IM
A

R
Y

L
E
V

E
L

PRINCE
CHARLES

QUEEN
ELIZABETH

SONMOTHER

MOTHER OF SON OF

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

SON OF

QUEEN
ELIZABETH

MOTHER OF

PRINCE
CHARLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
58 Chapter 3 What Is the Entity Paradigm?

attributes. The additional correlational attributes are—as far as it is concerned – dupli-
cates. The relational attributes contain all the information it needs. Its solution is to drop
all correlational attributes. The entity paradigm’s treatment of the ‘Queen Elizabeth is
the mother of Prince Charles’ example looks like Figure 3.22.

Figure 3.22:
Relational
attributes without
correlational
attributes

7.3 The problem with relations as attributes

As in the earlier staff example, here we have a weakness in the paradigm’s particles
leading to a distorted view of the world. The major distortion caused by the relational
attribute particle is clearly visible in Figures 3.21 and 3.22. In both figures, the most
important part of the relationship, the link between the two substances is drawn as a
line. But this link is only implicit in the substance and entity paradigms. Attributes, by
their nature, belong to only one substance. Neither paradigm has a particle that can
capture explicitly the vital linking element. Because neither paradigm is powerful
enough to explicitly reveal this, there is no chance of it being reflected accurately in a
business entity model.

There are other distortions. We can follow the substance paradigm and assume that
each relational attribute has a correlational attribute. But then we end up with two funda-
mental particles to handle a single relationship pattern in the business. The entity para-
digm avoids this problem by dropping the correlational attribute. But this has its own
problems. We can see this in our example. The ‘mother of/son of’ relationship really
involves two entity’s, Queen Elizabeth and Prince Charles, and we can only choose one
of these entities as the home for the attribute. In Figure 3.22, we chose Queen Eliza-
beth as its home; but there is no reason why we should not have chosen Prince
Charles. The real world only has a single pattern; so this choice is an indication that we
are not capturing its patterns accurately.

7.4 Entity business modelling’s problem with many-to-many relations

As we have just seen, relational attributes—even without correlations—are an awkward
pattern. This has had an unhealthy impact on entity business modelling. One good
example is the way in which modellers typically resolve many-to-many relations in
entity-oriented models. Consider this example.

P
R

IM
A

R
Y

L
E
V

E
L

PRINCE
CHARLES

QUEEN
ELIZABETH

SONMOTHER

MOTHER OF

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

MOTHER OF

PRINCE
CHARLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Simplifying the substance paradigm’s treatment of relationships 59

Assume a system records the employees of a company and the projects that they are
working on. Assume also that an employee can work on several projects and that a
project typically has many employees working on it. Then the situation, from an entity-
oriented point of view, is shown in the Venn diagram in Figure 3.23.

Figure 3.23:
Venn diagram for
employee/project
system

A problem now arises. The attribute pattern is not strong enough to reflect a many-to-
many relation such as ‘employee works on project’. The traditional solution is to build
the model as if there was a new ‘relational’ pseudo entity, employee–project, with
employee and project attributes as shown in Figure 3.24.

Figure 3.24:
Entity model for
employee/project
relation

From a practical point of view, this model can be used to build a working system. But
because we have assumed the new entity exists rather than mapped it, we are faced
with awkward questions:

#4

#3

#2

#1

MIKE

JOHN

SUE

SARAH

EMPLOYEE PROJECT

SUE PROJECT
#1

PROJECT
#2

JOHN

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

P
R

IM
A

R
Y

L
E
V

E
L

EMPLOYEE PROJECTEMPLOYEE/
PROJECT

PROJECT

EMPLOYEE

SUE/
PROJECT
#1

PROJECT #1

SUE

JOHN/
PROJECT
#2

PROJECT #2

JOHN

SUE/
PROJECT
#2

PROJECT #2

SUE

EMPLOYEE

PROJECT

PROJECT

EMPLOYEE

EMPLOYEE

PROJECT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
60 Chapter 3 What Is the Entity Paradigm?

• What is an employee–project entity?
• Is an employee-project as much of an entity as an employee and a project?

The answer to the second question is clearly no. The many-to-many relation has forced
us to build the model as if there were employee–project entities, even though there is no
external evidence for them. It is the weakness of the attribute pattern when it comes to
relationships that forces us into this position. This weakness means that not only can we
not reflect the structure of the world directly but we have to construct false ‘pseudo’ enti-
ties.

7.5 A partial solution: entity–attribute–relation modelling

Modellers have recognised this problem of fitting relations into the attribute pattern for
some time. They have found a way around the problem that keeps most of the entity
paradigm intact. It involves having a new particle to handle relations—a relation parti-
cle—with its own new patterns. This extended paradigm is known as the entity-
attribute–relation (E–A–R) paradigm. We can see how it works in our example. We now
model the problem employee-project relation as a relation not a new entity as shown in
Figure 3.25.

Figure 3.25:
Entity–attribute–
relation model for
employee-project
system

Introducing this new particle takes two steps in the right direction. It makes the structure
of relations more explicit in the model and it recognises that relations are not entities.
But its overall semantics is still solidly based on entities. We shall see that this is shaky
ground when we investigate the logical paradigm in Chapters 5 and 6.

EMPLOYEE

PROJECT
#1

PROJECT
#2

SUE

JOHN

PROJECT

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

P
R

IM
A

R
Y

L
E
V

E
L

SUE/
PROJECT

#1

SUE/
PROJECT

#2

EMP-
LOYEE/
PROJ-
ECT

JOHN/
PROJECT

#2

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
8 Our current way of seeing stored information 61

7.6 Another partial solution: O-O programming languages’ group attributes

O-O programming languages adopt a different and apparently simpler solution to the
many-to-many relation problem. They allow an object’s ‘attribute’ to have a group of val-
ues and so point to many programming ‘objects’. This eliminates the need to create
extra ‘objects’ to resolve many-to-many connections. However, while it works from an
operational system point of view, from a semantic, modelling, point of view, it does not.
This becomes clear when we ask for a semantic explanation of what an attribute with a
group of values refers to. There isn’t one.

8 Our current way of seeing stored information

The entity paradigm is the natural way for literate people to see information stored on
paper or computer systems. It has its foundations in the substance paradigm; our cur-
rent way of seeing things. And it evolved out of our culture’s thousands of years of expe-
rience in storing information on paper in lists and tables. Just think how easy most of us
find it to draw up lists and tables. We naturally move from the substance paradigm for
information in our minds to the entity paradigm for information stored outside them.

8.1 The four key types of things

However, if we assess the entity paradigm’s semantic power in terms of the four key
types of things identified in Chapter 2, we can see the deleterious effect its simplifica-
tion has had. It mainly affects generality, where there are two changes and both are for
the worse. First, simplifying the secondary hierarchy away has removed the apparatus
for handling more and less general types (shown in
Figure 2.12). Secondly, it is not practical to accurately reflect the distinction between
entity types and attribute types in information systems. The staff example showed how
attribute type signs can refer to entity types. Figures 3.18 and 3.19 illustrated how this
inevitably happens as the secondary hierarchy is simplified.

8.2 Learning to ignore the semantic problems

However, the simplified entity paradigm was, and is, a very successful means of man-
aging business information. It may have problems reflecting the structure of the world
directly. But, while the paradigm is successful, it does not seem to make sense to pur-
sue these problems. In fact, the best policy seems to be—learn to ignore them.

This is how most people work with the entity paradigm. To see this just ask yourself
whether the staff example above proves to you that the entity paradigm is inherently
wrong. I suspect many of you will say that it does not; that all it highlights is an academic
issue about semantics. In this way, we legitimise ignoring the problem.

However, as we go through the re-engineering to the object paradigm and we get a bet-
ter understanding of the semantic issues, we will develop a different perspective on this.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
62 Chapter 3 What Is the Entity Paradigm?

It will become clearer and clearer that if we ignore these semantic issues, then we will
miss a big opportunity for improving business modelling and so computer systems.

9 The next chapter

In the next chapter we look in more detail at how the substance paradigm addresses
these semantic issues.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 4
The Substance Paradigm’s

Semantics

1 Introduction

2 The semantics of the fundamental substance and attribute particles

3 Changes—a key type of thing

4 Generalising re-usable substance and attribute patterns

5 Our current way of seeing

6 The four key types of things

7 What’s next

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
64 Chapter 4 The Substance Paradigm’s Semantics

1 Introduction
In the last chapter, we saw how the entity paradigm’s simplification confused its seman-
tics. In this chapter, we look at the substance paradigm’s clearer semantics. We shall
see that it is not only consistent but extremely powerful. In particular, we shall see how
its secondary hierarchy significantly increases the potential for re-use.

Developing a firm grasp of substance semantics is important because, in our journey to
the object paradigm, we will use it as a benchmark, checking whether we are making
progress. This is not as easy as it sounds. Unlike technology, which clearly improves
over time, conceptual systems (such as semantics) do not progress quite so clearly. Old
semantics can be just as good as, if not better than, new semantics. We will see, for
example, in Part Three how logical semantics’ attempts to improve on the semantics for
change only work partially.

2 The semantics of the fundamental substance and attribute
particles

In the last chapter, we looked at the framework of the substance paradigm in terms of
what was taken out during the construction of the entity paradigm. This is useful and
important. But now we go to the heart of the matter; we look at the semantics of the fun-
damental substance and attribute particles. This explains why the substance paradigm
has the framework it does, and so gives us an insight into why the simplified entity and
attribute particles are the way they are.

2.1 Primary particles

The primary level is where our ideas of substance and attribute particles make closest
contact with actual particles in the real world. There is a simple, direct, one-to-one rela-
tionship between the two. Substance is, in some ways, more fundamental than
attributes so we start with it.

2.1.1 Underlying primary substance

Some people find the semantics of Aristotle’s primary substance difficult to grasp. They
find it easy to manipulate the primary substance signs (such as the words ‘my car’) used
for information, but find it difficult to see what these signs refer to. It is not so much that
they find it difficult in itself. It is more that, when looked at directly, primary substances
appear odd.

We can get an understanding of what primary substance is from this simple thought
experiment. Imagine my car. Imagine each of its attributes in turn and then imagine the

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The semantics of the fundamental substance and attribute particles 65

car without that attribute. Eventually we are left with a ghostly hulk that has no attributes
as shown in Figure 4.1. This is my car’s substance.

Figure 4.1:
Underlying pri-
mary substance

For Aristotle, substance was a neutral foundation for things. Each thing was a single
inert hunk of matter impregnated by a number of attributes, rather like water soaking
into a sponge. This is why, when we take my car and strip away all it’s attributes (men-
tally, we cannot do this physically), all that we are left with is its substance. This ghost of
the original car is a single inert hunk of matter that is no impregnated by attributes.

Most people unconsciously use Aristotle’s substance paradigm when seeing attributes.
They are happy seeing attributes that belong to something. The problems arise when
they start asking themselves what the attributes belong to. The logical (and historically
correct) answer is a ghostly substance. But this seems, to modern eyes, unbelievable.

2.1.2 Modern science’s view of matter

Part of the reason people now find the notion of substance unbelievable is that its view
of things containing a neutral hunk of inert matter is completely foreign to modern sci-
ence. Since the 17th century, scientists have regarded matter as the small particles of
which things are composed. They believe that the way these small particles of matter
behave determines the thing’s attributes. So a piece of lead is heavy because its parti-
cles are heavy; a piece of cloth is red because its particles emit light rays of the right
wavelength.

Modern scientists’ particle matter is very different from Aristotelian substance. This
raises a mental barrier to us accepting that, in most of our everyday life, we see things
in terms of substances and their attributes. However, we tend to see a body’s attributes
as belonging to something, and that something is substance. There is no way for us to
escape this fact because attributes are logically dependent for their existence upon sub-
stances.

RED

COLOUR

P
R

IM
A

R
Y

A
T

T
R

IB
U

T
E
S

PRIMARY SUBSTANCE

etc.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
66 Chapter 4 The Substance Paradigm’s Semantics

2.2 Secondary particles

The semantics of the secondary particles in the substance paradigm is not well defined.
Aristotle expresses the difference between primary and secondary substance in his Cat-
egories as follows:

Substance in the most literal and primary and common sense of the term is that which is
neither predicated of a subject nor exists in a subject, as for example, the individual
man or horse. Those things are called secondary substances to which, as species,
belong the things called substances in the primary sense and also the genera of these
species. For example, the individual man belongs to the species man, and the genus of
the species is animal. These, then, are called secondary substances, as for example,
both man and animal.

The notion of how a primary substance ‘belongs’ to a secondary substance is unclear. I
find that the easiest way to think about it is to consider a secondary substance as an
amalgamation of primary substances. Similarly, I think of a secondary attribute as an
amalgamation of primary attributes. So, for example, my car’s primary substance is part
of car secondary substance and my car’s red attribute is part of the secondary colour
attribute. This is shown schematically in Figure 4.2.

Figure 4.2:
Secondary parti-
cles

3 Changes—a key type of thing

As noted in Chapter 2, changes are one of the key types of things our re-engineering
focuses on. Working out what changes are, eventually leads us to the object paradigm.
The substance paradigm lays the groundwork with a basic set of patterns. When we see
how Aristotle used these patterns to describe changes, we will better appreciate the
sophistication of his paradigm.

We start by looking at what changes are in the substance paradigm. We then look at a
problem with changes and at how Aristotle’s substance particle neatly avoids it. We
then look at how Aristotle used his solution as a general pattern for changes.

Secondary
Particles

CAR

MY CAR

RED

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Changes—a key type of thing 67

3.1 Changes in the substance paradigm

Once we recognise that primary substance is the hunk of neutral inert matter underlying
things, it becomes clear that attributes play a vital role in explaining what changes are.

3.1.1 Defining change

If substance is inert and does not change, then when something changes it must be an
attribute that changes. It is like a chameleon changing colour—the chameleon itself
does not change, only its colour attribute. This division into unchanging substance and
changing attributes dictates the substance paradigm’s definition of what change is; it is
one attribute changing into another.

This leads to the three-tier structure for dealing with change shown in Figure 4.3. At the
bottom is unchanging substance, in the middle is potentially changing attributes and at
the top is the actual change process, the changing of attributes. This makes change,
one of our key types of things, an implicit third non-thing kind of particle.

Figure 4.3:
Primary levels of
change

3.1.2 Accidental (changing) and essential (unchanging) attributes

There is one small addition to the substance paradigm’s framework for change. One of
the first things Aristotle and his followers noticed is that not all attributes are capable of
change—some are essential to the substance’s existence. These were called essential
attributes (from the Latin esse—to be). When we talk about the ‘essential nature’ of
something, we are harking back to this Aristotelian distinction. Attributes that could
potentially change were called accidental (from the Latin accidere—to happen). This
distinction is shown schematically in Figure 4.4.

CHANGE

CHANGEABLE

UNCHANGING

PRIMARY
SUBSTANCE

NGA EHC

PRIMARY
ATTRIBUTE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
68 Chapter 4 The Substance Paradigm’s Semantics

Figure 4.4:
Essential and acci-
dental attributes

This is an easy distinction for people used to working with computer systems to compre-
hend. They are familiar with files (secondary substances) in computer systems that
have fields (secondary attributes). They are familiar with programs for amending the
file’s records (primary substances), which enable users to change some fields (primary
attributes). These fields are the computing equivalent of accidental attributes. Fields
that the users are not allowed to change are typically the computing equivalent of
essential attributes.

3.2 A problem with changes

We can see the benefits of an unchanging substance if we look at how it handles a
problem with changes well known to the Ancient Greeks. One of them, Heraclitus of
Ephesus, was referring to this problem when he asked his famous question:

Can we bathe in the same river twice?

The answer is obviously both yes and no. Yes, it is the same river—no, it is not the
same water.

3.2.1 The problem—what makes something the same?

But why is this the answer? Why do we call the river the same at different times? It stays
roughly the same size and shape and stays in roughly the same position. But this can-
not be what makes it the same river. To see this, consider a lepidopter. It starts out as a
caterpillar then metamorphoses into a pupa then metamorphoses again into a butterfly
(shown in Figure 4.5). It does not stay even roughly the same size and shape, it cer-
tainly does not stay in roughly the same position. Yet we have no problems with saying

CHANGE

CHANGEABLE

UNCHANGEABLE

ACCIDENTAL
ATTRIBUTE

PRIMARY
SUBSTANCE

ESSENTIAL
ATTRIBUTE

NGA EHC

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Changes—a key type of thing 69

it is the same thing through all its changes. There must be something other than similar
size and shape making it the same.

Figure 4.5: A
changing lepidop-
ter

3.2.2 The answer—unchanging substance

The substance paradigm has a simple solution to the problem. It suggests that it is the
lepidopter and river’s unchanging substance that makes them the same. This is illus-
trated schematically for lepidopters in Figure 4.6.

Figure 4.6:
Unchanging sub-
stance

3.3 Aristotle’s general pattern for change

Once Aristotle established that change was the process of one attribute changing into
another, he used this as the general pattern for change.

3.3.1 Change as change of attributes

He claimed that this general pattern covered a wide variety of, to us now, unrelated
changes. Examples include:

• Growth (the transformation of an acorn to an oak or the growth of a child into
adulthood),

• Alterations of intensity (the heating up of a cold iron bar), as well as

Stages in a Lepidopter's Growth

Caterpillar Pupa Butterfly

LEPIDOPTER LEPIDOPTER

CATERPILLAR PUPA

LEPIDOPTER

BUTTERFLY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
70 Chapter 4 The Substance Paradigm’s Semantics

• Change of position (the falling of a stone).

These patterns are illustrated in Figure 4.7.

Figure 4.7:
Examples of pat-
terns of change

For Aristotle, all these various types of change were similar; he saw them as members
of a single natural family, each exhibiting the same general pattern. Because they all
shared the same pattern, he could, and did, generalise them into the single comprehen-
sive pattern illustrated in Figure 4.8.

Figure 4.8:
General pattern of
Aristotelian
change

This general pattern bound the particular patterns of change closer together. It also had
a big effect on how Aristotle and his followers thought about change. For them, analys-
ing change primarily involved identifying the basic characteristics that apply to all the
members of the family of change patterns. Analysing the individual characteristics of the
various sub-types of change was much less important. In this way, the general pattern
influenced the way in which people thought of the lower level patterns.

3.4 Aristotle’s pattern for motion

One good example of how the general pattern shaped the lower level patterns is
motion—change of position. Within the Aristotelian paradigm, the shape of motion’s pat-
tern was largely dictated by the shape of the general change pattern. (Compare the pat-
tern for motion in the bottom right corner of Figure 4.7 with the general pattern in
Figure 4.8.)

TREE

GROWTH

GROWTH
STAGE

ACORN OAK

secneirepxe

h as a

o
f

m

o
ve

s
fr

o
m

m
oves

to

a

si

a si

BODY

MOTION

POSITION

START
POSITION

END
POSITION

secneirepxe

h as a

o
f

m

ove
s

fr
o
m

m
oves

to

a

si

a si

PERSON

GROWTH

GROWTH
STAGE

CHILD ADULT

secneirepxe

h as a

o
f

m
o
v
e
s

fr
o
m

m
oves

to

a
si

a si

IRON
BAR

TEMPERATURE
QUALITY

COLD HOT

secneirepxe

h as a

o
f

m

ove
s

fr
o
m

m
oves

to

a

si

a si

CHANGE OF
TEMPERATURE

BODY

CHANGE

ATTRIBUTE

START
ATTRIBUTE

END
ATTRIBUTE

secneirepxe

has many

o
f

m
ove

s
fr

o
m

m
oves

to

a

si

a si

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Changes—a key type of thing 71

We can see this in the substance paradigm’s resolution of an ancient paradox. The
Ancient Greek thinker, Zeno of Elea (who lived around the early 5th century BC), raised
a number of paradoxes. The one we are interested in is based on a problem with
change and relates to the problem of motion. It appears to prove that moving arrows
could not be moving.

We are happy to accept that the phrase ‘is red’ refers to a red attribute. So it is easy to
assume that because the phrase ‘is moving’ in the sentence ‘the arrow is moving’ looks
similar, it must also refer to something. Within the substance paradigm, we would
assume it referred to a moving attribute. The similar linguistic shape turns out to be mis-
leading. Zeno proposed a simple thought experiment that showed the arrow cannot be
moving.

Consider a situation where an arrow has been shot. Think of it the instant after it leaves
the bow. It would have a particular position, say two inches in front of the bowstring. Is it
moving; does it have a moving attribute? One’s initial reaction is to say yes. However,
on reflection, if the arrow is at a particular point at a particular instant in time, it cannot
be moving—it must be at rest.

Figure 4.9:
Aristotelian motion
of an arrow

Consider the arrow a second later. It is again at rest in a particular position and again,
not moving. In fact, if we consider the arrow at any point in its trajectory, it will be at rest,
not moving. If it is not moving, how can it have a moving attribute. This led Zeno and
others to say motion is, in one sense, an illusion. We can still explain motion within the
substance paradigm. It is changing one position attribute for another—as shown in Fig-
ure 4.9. This falls neatly under the general change pattern.

The general pattern for change inherent in the substance paradigm elegantly explains
what motion is in a way that avoids Zeno’s paradox. It is a change in the position
attribute. The 20th century thinker, Bertrand Russell, called this an ‘at-at’ approach —
the arrow is ‘at’ one position ‘at’ one time and ‘at’ another position ‘at’ another time.

Essentially what the thought experiment brings to our attention is that even though ‘is
moving’ looks like an attribute it cannot be one. Within the substance paradigm, ‘is mov-
ing’ refers to a process of changing position attributes. In terms of the three levels of
change (shown in Figure 4.3), it belongs to the top level and so is neither a substance
nor an attribute.

Zeno’s paradox is a useful way of assessing how well a paradigm deals with change. In
Chapter 6, the paradox will reveal the logical paradigm’s similar implicit change parti-

ARROW
#12

P1 P1

#12 #12

P2 P2

ARROW
#12

POSITION

P2

POSITION

P1

motion

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
72 Chapter 4 The Substance Paradigm’s Semantics

cle—dynamic classifications. It is only in the object paradigm that the paradox is
resolved with a type of object particle that explicitly captures the pattern for change. We
shall see how this new type of object is re-engineered in Chapter 8.

4 Generalising re-usable substance and attribute patterns

The substance paradigm has significantly more potential for generalisation, and so
re-use, than the entity paradigm. Because it is a more sophisticated version of the entity
paradigm, it retains all the entity paradigm’s potential for re-use, and supplements it with
its own. This increased potential comes from the generalisation inherent in the second-
ary level hierarchies. We now look at this and also at how Aristotle tried to harness its
power into a general hierarchy of types of things—the categories.

4.1 Inheritance down the secondary level hierarchy

We saw in the last chapter, how entity paradigm re-use operates at the individual level.
How it can fix a pattern of attribute types for an entity type, which is then (re-)used for its
individual entities (shown in Figure 3.6). In the substance paradigm, generalisation and
re-use operate in the secondary level hierarchies. This involves a higher level second-
ary substance fixing patterns of secondary attributes for lower level secondary sub-
stances.

4.2 Inheriting secondary attributes

For example, if the secondary substance vehicle has a colour attribute then this
attribute is inherited by all the secondary substances below it in the hierarchy. As shown
in Figure 4.10, this includes the car and van secondary substances. The figure shows
three colour attributes. However only one of these, the vehicle’s colour attribute, actu-
ally exists. The other two, the car and van substances’ inherited colour attributes are
there to illustrate where vehicle’s colour attribute is being inherited.

Figure 4.10:
Inheriting second-
ary attributes
down the second-
ary substance
hierarchy

VEHICLE

CAR VAN

COLOUR

COLOUR COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Generalising re-usable substance and attribute patterns 73

This secondary substance hierarchy can be used to compact more information in less
space. Figure 4.11 illustrates how this works. On its left-hand side is a model with no
secondary substance hierarchy, where the car and van substances both have a colour
attribute. On its right hand side is the same model with a secondary hierarchy. In this
model, there is only one colour attribute. This belongs to the vehicle substance and is,
as shown, inherited by the car and van substances. In this very simple example, two
attributes are compacted into one.

Figure 4.11: Re-
use compacting
information

4.2.1 Re-use across secondary substances

There is another form of re-use that occurs in the substance paradigm. Because the
secondary attribute hierarchies are independent of substance, it is possible for them to
be re-used across secondary substances. Like attribute inheritance, this operates at the
secondary level and through re-use leads to compacting.

Figure 4.12:
Re-using the col-
our attribute hier-
archy

It is easiest to see how this works with an example. We use cars and colours again.
There is a colour attribute hierarchy that is linked to the car substance hierarchy. It is,
however, independent of the hierarchy, which means it can be linked to other sub-
stances. It could, for example, be linked to socks. These are coloured; some socks are

CAR

es
u-

er

VEHICLE

VAN

COLOUR

COLOUR COLOUR

CAR VAN

COLOUR COLOUR

re
-u

se

E
N

T
IT

Y
S
U

B
S
T
A

N
C

E

GREEN

RED

GREEN

RED

Duplication

esu-er

use

GREENRED

COLOUR

CAR

COLOUR

CAR

COLOUR

SOCK

COLOUR

SOCK

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
74 Chapter 4 The Substance Paradigm’s Semantics

red, some green. When we start analysing the sock secondary substance, we need to
recognise that it is linked to the colour attribute hierarchy—as shown in the substance
section of Figure 4.12. If we did not have a secondary hierarchy we would have to con-
struct the colour attribute anew—as shown in the entity section of Figure 4.12.

The higher up the secondary substance hierarchy an independent attribute hierarchy is
connected, the more fruitful re-use and thus compacting we get. Consider what hap-
pens when we generalise the independent colour attribute connections in the substance
section of Figure 4.12 up a level. We take the connections from car up to vehicle and
from sock up to clothes—as shown in Figure 4.13. Even in this simple example the
scale of compacting is significant. The colour attribute hierarchy does not have to be re-
built for each type of vehicle or clothes. This kind of compacting cannot be done in the
entity paradigm—without a secondary level hierarchy in its framework, it just is not pow-
erful enough.

Figure 4.13:
Generalising the
re-use of the col-
our attribute hier-
archy

4.3 Extending the framework for re-use—the Aristotelian categories

Aristotle also made another very important step for generalisation and so for re-use. He
suggested that there was a general framework below the level of fundamental particles.
This would mean that all information systems, computer or otherwise, could share a
common, high level, framework.

Today it is normal for people in different corporations to use computer systems with dif-
ferent frameworks. It is even common for people within a large organisation to use sys-
tems with different frameworks. If there was one common, high level, framework across
all these systems, this would greatly simplify integrating information.

All those centuries ago, Aristotle saw the need for a wider general framework. He out-
lined his proposal for a system of ten categories that identified specific types of second-
ary attributes. This was then developed and enhanced by his followers. In Chapter 11,
we will see how the system of categories develops into the object-oriented notion of a
general lexicon.

GREENRED

COLOUR

CAR

VEHICLE

COLOUR

COLOUR

SOCK

CLOTHES

COLOUR

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Generalising re-usable substance and attribute patterns 75

4.3.1 Types of categories

Aristotle worked from an analysis of language. He found, or thought he found, that
words or phrases, and so the things they referred to, fell into one or more of ten catego-
ries. These were:

• Substance,
• Quantity,
• Quality,
• Relation,
• Place,
• Time,
• Posture,
• State,
• Action, and
• Passion.

In this framework, the nouns ‘plant’ and ‘animal’ signify kinds of (secondary) substance
and so are in the category substance. The noun ‘colour’ signifies a quality and so is in
the category quality. The first category is substance, the other nine categories are kinds
of attributes. So the category structure ends up looking like Figure 4.14.

Figure 4.14:
Category structure

4.3.1.1 Tree structure of categories

The ten categories were only the top level of the structure. Below each of them there
were divisions and sub-divisions. Aristotle took a relaxed view on whether the list of cat-
egories was exhaustive and whether categories could overlap (in other words, have a
lattice structure).

However, his followers, like all followers, moulded Aristotle’s relaxed view into a stricter
orthodoxy. For them, there were ten mutually exclusive categories whose divisions and
sub-divisions had also to be mutually exclusive. They developed the traditional system
of definition by genus and differentia—the ‘method of division’. This starts with a very
general classification (the genus) and divides it into smaller mutually exclusive types

QUANTITY QUALITY RELATION

ONE RED OWNED BY ME IN GARAGE

ATTRIBUTE
CATEGORIES

SUBSTANCE
CATEGORY

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

H
IE

R
A

R
C

H
Y

MY CAR

SUBSTANCE

PLACE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
76 Chapter 4 The Substance Paradigm’s Semantics

(species). This is done by means of some property (the differentia), which every mem-
ber of the genus either does or does not have. The result is a tree structure.

The simplest and best known system of categories was developed by Porphyry, a 3rd
century AD commentator on Aristotle’s categories. His ‘Tree of Porphyry’ started by
dividing things into material (bodies) and the immaterial; bodies into the animate (living
things) and the inanimate; living things into those that had sensation (animals) and
those that did not (vegetables); and the animals into rational (man) and non-rational
(brutes). This served as a model for most subsequent systems of taxonomy. For exam-
ple, the modern classification of the animal kingdom based on work done by the English
naturalist John Ray (1627–1705), and the botanical classification devised by the Swed-
ish taxonomist, Linnaeus (Carl von Linné, 1707–78).

Similar divisions are made in the attribute categories. For example, colour in the
attribute category quality is divided into red, blue, green, etc. and then further divided
and sub-divided. The shape of the resulting structure is shown in Figure 4.15.

Figure 4.15:
Category tree
structure

4.3.1.2 Categories as a rudimentary lattice

A tree structure is too constraining to reflect the world adequately. However, it would be
incorrect to describe Aristotle’s system of categories as a pure tree structure. It is really
a type of rudimentary lattice structure built using parallel tree structures, one that is less
constraining than a simple tree structure. For example, the lattice shown on the
left-hand side of Figure 4.16 would be translated into a tree substance hierarchy and a
parallel gender attribute hierarchy. However, these parallel tree structures are not as
powerful as a full lattice structure. In other words, they are not really powerful enough to
describe the type of structures that exist in the real world.

RED

QUALITY

COLOUR SHAPE

SUBSTANCE

ANIMATE
THING

INANIMATE
THING

MAN

THE SUBSTANCE CATEGORY AN ATTRIBUTE CATEGORY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Generalising re-usable substance and attribute patterns 77

Figure 4.16:
Parallel tree struc-
tures – rudimen-
tary lattice
structure

What is interesting is that this tree constraint is not necessary to the substance para-
digm. Aristotle’s followers imposed it in the (mistaken) belief that they were making the
structure more organised. To them it somehow seemed better if each category was
divided into mutually exclusive sub-categories. This shows how deeply the tree way of
seeing was embedded in people’s minds then—as it still is now.

4.3.1.3 Single inheritance and OOPs

Aristotelian categories have been enormously influential. They are still a powerful influ-
ence on the way we see and ‘categorise’ the world. We can see this influence in O-O
programming languages. Early versions had what was called a single inheritance struc-
ture—what we have been calling here a tree structure.

Now these languages have developed multiple inheritance structures, but programmers
still have difficulty in breaking away from the tree category way of seeing things. For
example, at a recent O-O conference, most speakers who talked about multiple inherit-
ance said they had found it was of limited use. Which it is, if you are still working within
a tree category pattern.

4.4 Relation between primary and secondary levels

In the substance and entity paradigm, the relationship between the primary and second-
ary levels is refreshingly simple. Primary level particles belong to one and only one sec-
ondary level particle. This is known as single classification. A more flexible relationship
is possible—at least from a structural point of view—where primary level particles can
belong to more than one secondary level particle. This is known as multiple classifica-
tion.

BOAR SOW

ANIMAL

PIG
MALE
ANIMAL

FEMALE
ANIMAL

ANIMAL

GENDER

PIG

PIG

MALE

PIG

FEMALE

GENDER

MALE FEMALE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
78 Chapter 4 The Substance Paradigm’s Semantics

4.4.1 Single and multiple classification

Part of the reason that both paradigms have a single classification framework is in the
nature of substance. This fosters a feeling that primary substances are of particular type
and only of that type (in other words, belong to one particular secondary substance).
This means that the possibility of multiple classification is not naturally considered by
people working within the paradigm.

Figure 4.17:
Tendency towards
single classifica-
tion

However, if they were to consider it then there would be semantic problems. If the hunk
of inert matter was composed of two substances, would the two substances be thor-
oughly mixed? How would it inherit the patterns of attributes from both substances? If
the substances were mixed, would the attributes belong to the whole mixture or only
those bits of substance that inherited them?

In Figure 4.17 we can see the structural differences between these two types of classi-
fication illustrated. If multiple classification were allowed, we could classify Porky as a
pig and male animal. Because we are restricted to single classification, we have two
options. We can identify a new substance, boar (male pig), instead of male animal.
Because this new substance only belongs to the pig substance, no multiple classifica-
tion is involved. Or we can treat male as an attribute—again this does not involve multi-
ple classification. These three options are shown in Figure 4.17.

Interestingly this tendency towards single classification means that the parallel tree
structure format of the categories (shown in Figure 4.16) is preserved across the pri-
mary–secondary level divide. As Figure 4.17 shows, multiple classification allows a lat-
tice across the divide; whereas, single classification restricts the link to a tree structure.

PIG PIG MALE
ANIMAL

P
R

IM
A

R
Y

L
E
V

E
L

G
E
N

E
R

A
L

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

PORKY PORKYPORKY

MALE

GENDER

ANIMAL

PIG

BOAR

ANIMAL ANIMAL

OR NOT

GENDER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Generalising re-usable substance and attribute patterns 79

4.4.2 Static and dynamic classification

Seeing primary substance as a homogenous hunk of matter underlying things has
another effect on the relationship between the primary and secondary levels. We tend to
assume that a primary substance always belongs to the same secondary substance
and that the relationship between the two never changes. This is called static classifica-
tion. If a primary substance could change its secondary substance, then the link
between the two would be called a dynamic classification.

The reason for the substance paradigm restricting itself to static classification is, like
single classification, rooted in the nature of substance. Substance gives a body its iden-
tity over time. So the idea of a substance changing its type appears contradictory. If
something’s substance changed its type, how could it remain the same thing? If some-
thing changes, then—within the substance paradigm —it must be an attribute.

We can see how this works in an example. Assume that Porky the pig has a sex
change—he/she starts off as a boar and ends up a sow. If dynamic classification were
allowed, we would classify Porky initially as boar secondary substance. Then, during
the sex change operation, dynamically change the classification to sow substance.

However, the substance paradigm does not allow dynamic classification. As Porky’s sex
changes, this means that, by definition, it is an attribute. So what is happening is a gen-
der attribute changing, not a boar substance being re-classified. The two alternatives
are shown in Figure 4.18.

Figure 4.18:
Tendency towards
static classification

NOT

PIG

BOAR SOW

P
R

IM
A

R
Y

L
E
V

E
L

G
E
N

E
R

A
L

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

PORKY PORKY PORK-
ETTE

PORK-
ETTE

FEMALE

FEMALE

MALE
GENDER

PIG

ANIMAL ANIMAL

MALE

GENDERGENDER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
80 Chapter 4 The Substance Paradigm’s Semantics

4.4.3 O-O programming languages

This static classification aspect of the substance paradigm has, like single classification,
influenced the development of O-O programming languages. These typically follow the
substance paradigm in having a static classification framework, where objects cannot
dynamically change type. This means that, as in the substance paradigm, attributes
have to handle change.

5 Our current way of seeing

Static classification in O-O programming languages is just one of a myriad of ways in
which the substance paradigm has influenced the way we now see things. Over the
centuries, Aristotle’s paradigm has embedded itself deeper and deeper in our con-
sciousness, until it now seems a natural and normal way to see. As with most para-
digms, this works at an unconscious level.

What this chapter has done is make it conscious—revealing the semantics at the heart
of the substance paradigm and so also the entity paradigm. We now have a clear and
consistent idea of our current way of seeing’s semantics. We consciously appreciate
what a substance and an attribute are; and also, what the corresponding entity and
attribute signs in entity-oriented models refer to. This conscious appreciation of our cur-
rent way of seeing is an essential precursor to consciously working our way forward to
the object paradigm.

5.1 The development of finer, more accurate, distinctions

The development of the substance paradigm in 4th century BC Greece was part of a
general improvement in semantics enabled by the development of writing technology
and the invention of the alphabet. One aspect of this that is relevant to our re-engineer-
ing is an overall development of finer, more accurate, distinctions. (We shall see, in later
chapters, how the re-engineering from entities to objects continues this development.)

5.1.1 Distinguishing between the literal and the metaphorical

One good example of the development of more accurate distinctions is recognising the
difference between literal and metaphorical descriptions. Before Aristotle’s time, people
did not make this distinction. Aristotle’s teacher Plato had not quite arrived at it. In the
Sophist he condemns ‘likenesses’ (in other words, metaphors) as ‘a most slippery tribe’
even though he is himself using one.

Aristotle, however, made the distinction both forcefully and explicitly. He condemned
metaphors outright, insisting that they should not be used in definitions and criticising
them in his predecessors work. For example, Aristotle criticises Empedocles for
describing salt water as the sweat of the Earth (and so, by implication, that sweat and
sea-water are the same).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Our current way of seeing 81

Aristotle comments:

Perhaps to say that is to speak adequately for poetic purposes—for metaphor is poetic—
but it is not adequate for understanding the nature [of a thing].

With hindsight we can see that it was not so much that Empedocles was mistaken, but
that he had not developed a sufficiently accurate framework to distinguish between the
literal and metaphoric.

5.1.2 Comparing oral and literate cultures

If we compare the way oral and literate cultures see signs and sameness, we can
clearly see the development of the finer and more accurate distinctions that came with
writing. The notion of a sign is quite broad. We say things like:

A rapid pulse is a sign of a fever.
This footprint is a sign someone passed here recently.
Pottery fragments are a sign of human civilisation.

We also talk of things as signs representing other things:
The elephant represents the (US) Republican party.
The (UK) Member of Parliament represents his constituents.

We use both of these ways of talking to explain the meaning of words and symbols:
The word ‘dog’ is a sign for a dog.
The symbol ‘$’ represents dollars.

At a general level, all these types of signs have something in common. But modern
western culture, with the resources of writing, has developed a sophisticated under-
standing of their differences. It recognises that the link between the word ‘dog’ and a
dog is not the same as the link between a rapid pulse and fever.

However, these distinctions took a long time to develop. Often oral cultures not only do
not make these distinctions but also do not make a sharp distinction between the thing
itself and something that represents it. A well-researched example is the Huichol Indi-
ans of Mexico, who sacrifice deer to their gods. When no deer is available, they offer
corn in its place. They explain this by saying that the corn is the same as deer.

This sounds amazing to our literate ears. We can see it is in their interest to say that
corn is deer; it means they have something to sacrifice to the gods. The connections go
deeper than that. For example, their mythology claims that corn was once a deer. How-
ever this does not explain why, in discussions, they adamantly claim that corn and deer
are the same. A claim that, to our literate minds, is unintelligible.

The Huichol are not unique: other oral cultures make similar claims. The Nuer of Sudan
claim that twins are birds. The Zafimaniry claim that the centre post of the clan’s chief
hut is an ancestor. The Puluwat Islander navigators claim that east is a big bird. We
have similar claims in our history. Statements such as ‘this is my body’ in the Christian
bible, puzzled the scholars developing a literate (and literal) understanding of text in the
Middle Ages and still puzzles some people today.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
82 Chapter 4 The Substance Paradigm’s Semantics

We can understand what is going on once we realise that the problem is not with the
oral cultures’ ideas of corn and deer, but with their ideas of signs and sameness. With-
out the resources of writing, they have not yet developed our modern, more accurate,
distinctions between different types of signs and sameness. Figure 4.19 illustrates this
development schematically. The Huichol Indians claim that corn is deer because, for
them, saying that ‘corn is deer’ is the same type of thing as saying that ‘corn represents
deer’. ‘Is the same as’ and represents’ belong to the same conceptual category.

Figure 4.19:
Shift to finer, more
accurate, distinc-
tions

This is why the Huichol form of identity claim is common in oral cultures, but unintelligi-
ble to literate ones. Oral cultures do not need as sharp a distinction as literate ones; for
them the potential ambiguity it is not a problem. We shall re-visit the Huichol Indians
when we look at how the shift to the logical and object paradigms leads to similar devel-
opments of finer distinctions. There the boot will be on the other foot. Most of us will be
in the position of the Huichol Indians. We will (initially, at least) find it difficult to see what
these new distinctions are and why they need to be made.

6 The four key types of things

We have seen that the substance paradigm, despite its extreme age, was and is sophis-
ticated. We have seen how it addresses all four of the key types of things we identified
in Chapter 2:

• How it uses the notion of primary substance and attributes to handle things’ par-
ticularity.

• How it uses the notion of secondary substance and attributes to handle types.
How it uses the secondary hierarchies to handle levels of generality.

• How it uses relational attributes to handle relationships—although, as we have
seen, this is not really a satisfactory solution.

• How it uses shifts to new accidental attributes to handle changes—although
these shifts are, in a sense, a new implicit type of particle.

For our purposes, it offers a comprehensive semantics for the four key types of things.
This is why it makes such a good benchmark and starting point for our re-engineering to
object semantics.

SIMPLE 'ORAL' CATEGORY MORE ACCURATE 'LITERATE' DISTINCTIONS

'DOG' REFERS TO DOG

MEMBER OF PARLIAMENT
REPRESENTS

CONSTITUENTS

CORN IS DEER

RAPID PULSE IS FEVER

SEA IS SWEAT

SEA IS SALT WATER

'DOG' REFERS TO DOG

RAPID PULSE IS FEVER

NATURAL
SIGNS

CORN IS DEER

MEMBER OF PARLIAMENT
REPRESENTS

CONSTITUENTS

SEA IS SWEAT

METAPHORICAL
DESCRIPTIONS

SEA IS SALT WATER

LITERAL
DESCRIPTIONS

SIGNS REFERRING
SIGNS

REPRESENTING

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 What’s next 83

7 What’s next

In the last chapter, we saw why the substance paradigm was simplified into the entity
paradigm and the semantic confusion this caused. We also recognised that this simplifi-
cation taught us to down play, even ignore, the semantic aspects of business entity
modelling. We discussed the root cause of this, the two-dimensionality of paper and ink
technology. With the invention of computing technology, this constraint disappears and
we have an opportunity to re-introduce semantics into business modelling.

Some people may be tempted to do this within the substance paradigm’s semantics
described in this chapter. It is, in many ways, an improvement on the entity paradigm. It
has the benefits of both secondary substance and attribute hierarchies and, through the
use of independent attribute hierarchies, the potential for re-use across secondary sub-
stances. But the substance paradigm is not just old; it is ancient—over two thousand
years old. There have been several generations of developments in semantics since
then. It only makes sense to take advantage of the improvements they offer.

Furthermore, the substance paradigm seems to have a couple of potential problems in
reflecting the real world accurately. We have seen how its treatment of relationships is
unsatisfactory. We have also seen that its secondary hierarchies cannot handle multiple
inheritance and classification. If we want to take full advantage of computing technol-
ogy’s flexibility, we need to rise above these constraints.

Nevertheless, the substance paradigm plays an important part in our re-engineering of
the information paradigm. It acts as a benchmark against which we can measure the
progress of the re-engineering. Each step forward should offer better solutions to the
issues, and, in the end, more potential for re-use. In Part Three, we re-engineer into the
next paradigm on our route to objects—the logical paradigm.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
84 Chapter 4 The Substance Paradigm’s Semantics

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part Three
Shifting Towards Objects—The

Logical Paradigm

Chapter 5 The Emergence of the Logical Paradigm

Chapter 6 The Logical Paradigm’s Framework

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 5
The Emergence of the Logical

Paradigm

1 Introduction

2 Origins of the logical paradigm

3 Shifting from substance to extension

4 Re-engineering primary substance

5 Re-engineering secondary substance

6 Re-engineering secondary attributes

7 Re-engineering relational attributes

8 Simplifying and generalising the information framework

9 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
88 Chapter 5 The Emergence of the Logical Paradigm

1 Introduction
In Part Two, we clarified what the entity and substance paradigms were. Here, in Part
Three, we re-engineer the substance paradigm into the logical paradigm. This is an
important step because it establishes a number of patterns that are inherited by the
object paradigm. In this chapter we construct the logical paradigm’s framework out of its
fundamental particles. In the following chapter, we fill in this framework.

1.1 Re-engineering the substance paradigm

We start off this chapter, as we did with the entity paradigm, by looking at the origins of
the logical paradigm. Then we build its framework by re-engineering the substance par-
adigm. We take the substance paradigm’s four fundamental particles:

• Primary substance,
• Primary attributes,
• Secondary substance, and
• Secondary attributes.

And re-engineer them into the logical paradigm’s three fundamental particles:
• Logical classes,
• Logical tuples, and
• Individual logical objects.

2 Origins of the logical paradigm

Mathematics provided the inspiration for the logical paradigm. We shall see the mathe-
matical nature of the paradigm when we look at its fundamental particles. The para-
digm’s two core patterns of class and tuple (its new fundamental particles) come from
set theory. This is a branch of mathematics that has its origins in work done in the 19th
century. Foundational work was done by a number of mathematicians; including George
Boole (1815–1864), John Venn (1834–1923) and Georg Cantor (who developed mod-
ern set theory between 1874 and 1897). The paradigm’s framework was developed by
the German, Gottlob Frege (1848–1925), and the American, Charles Sanders Peirce
(1839–1914).

2.1 Meaning and understanding

To support his mathematical work, Frege developed a new notion of meaning that is
central to both the logical and object paradigms. In the Prologue, we noted that the
objective of business modelling is capturing understanding. It may help us to appreciate
the importance of Frege’s work if we re-phrase this as ‘capturing meaning’.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Origins of the logical paradigm 89

2.1.1 Frege’s analysis of meaning as sense and reference

Frege suggests that the meaning of a concept (or sign) has two components:
• Sense, and
• Reference.

Reference is the relationship between the concept and the thing it refers to (as illus-
trated earlier in Figure 2.1). Sense is the relationships a thing has to other things
(reflected in a concept’s relationships to other concepts). Together these two compo-
nents are a concept’s meaning.

Frege developed his analysis to resolve a problem found with earlier theories that
based their analysis solely on reference. He used the following example to illustrate
how his analysis worked and the problem it solved.

The planet Venus is visible in the morning sky, where it is called the morning star. It is
also visible in the evening sky, where it is called the evening star. If the simplistic notion
of the concept’s meaning only being what it refers to is correct then, as the three con-
cepts:

• The morning star,
• The evening star, and
• Venus

All refer to the same object; they should be interchangeable. However, when we inter-
change them in the sentence;

Venus is Venus.

We get the sentence:
The morning star is the evening star.

Figure 5.1:
Venus’s meaning
map

The first sentence is obviously and tautologically true. The second sentence tells some
people a new fact (because they do not know that both the morning star and the

EVENING
SKY

MORNING
SKY

Sg tani rn Ser no seM

C
O

N
C

E
P

T
S

O
B

JE
C

T
S

ng Si tn ae rvE Sense

Reference

Senses

ni nees

ninese

Venus

r
e
fe

r
s

t
o

VENUS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
90 Chapter 5 The Emergence of the Logical Paradigm

evening star are Venus). In our everyday sense of meaning, the two sentences certainly
have different meanings. This, Frege explains, is because of the different sense ele-
ments in their overall meanings. We can see how different these are in the map of
Venus’s meaning in Figure 5.1.

Scholars recognise Frege’s explanation as a big step forward. The respected philoso-
pher and Fregean scholar, Michael Dummett, calls it (with characteristic academic cau-
tion) ‘the beginnings of a plausible account . . . of understanding’:

Frege arrived, for the first time in the history of philosophical enquiry, at what was at
least the beginnings of a plausible account of sense, and thus of understanding.

2.1.2 Mapping sense explicitly and accurately

Frege’s analysis enables us to neatly explain what a business model is. It is a map of
the (Fregean) sense of the business. It is an explicit map of the objects in the business
and their patterns of relationship. This explains what reflecting the business directly—a
key feature of O-O—involves.

A direct reflection faithfully and accurately maps sense—the business objects and their
patterns of connections. An accurate map enables people to see the meaning of the
business clearly and directly, and so helps them to develop a better understanding of it.

An indirect reflection distorts the patterns so that they can fit into the framework of the
model, making it difficult to see the underlying objects clearly. The worked examples in
Part Six provide examples of this. The examples show how patterns are distorted to fit
into the entity framework of existing computer systems.

2.2 The need to determine reference

Most business modellers intuitively recognise the need to capture sense. They instinc-
tively understand how sense supports reference, making a cohesive whole. They can
see that sense helps to fix reference and so they naturally model it. They see, for exam-
ple, that saying ‘deal #123’ does not fix reference anything like as well as saying ‘the
deal you did yesterday with NatLand Bank for £10m’—which has more Fregean sense.

However, very few people, even business modellers, intuitively recognise the need to
determine the reference of the concepts they are using. If indeed the concepts they are
using actually refer to anything (we raised a similar point in Chapter 2—using the data–
process distinction as an example). Business modellers, like most people nowadays,
tend to work with concepts and ignore the objects in the world that they are meant to
refer to. They treat the concepts as if they were the objects themselves. This tends to
mean that the needs of the computer system (in the shape of concepts) drive the sys-
tem building process, rather than the business itself (in the shape of objects).

Frege recognised that this was a serious problem. He took as a central principle (in The
Foundations of Arithmetic):

. . . never to lose sight of the distinction between concept and object.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Shifting from substance to extension 91

If we adopt this principle then we will never assume that we are modelling business
objects when we are focusing on concepts.

2.2.1 The reference principle

Frege’s analysis of meaning assumes a basic principle of the logical and object para-
digms—the strong reference principle. It is not difficult to grasp; indeed it seems simple
and obvious. It is that a sign (concept) in the business model explicitly refers to one and
only one object in the business. And conversely a business object is explicitly referred
to by one and only one sign in the model. A simple example is given in Figure 5.2. This
principle, if strictly adhered to, ensures that a business model is a direct, and so explicit,
reflection of the world.

Figure 5.2:
Example of the
strong reference
principle

One reason this principle is so central is that it implies another central principle—that
everything is an object. If every sign in the model refers to an object; then, as far the
model is concerned, everything is an object. (This includes the ‘sense’ connections
between objects.) To keep things tidy and avoid confusion, it also suggests that there is
no more than one sign for each object. The result is a simple, clean semantics.

For individual physical things, this principle appears obvious; for other types of things, it
is more difficult to uphold. In fact, as we shall see, it has taken a substantial re-engineer-
ing of the way we see things to make it work. The principle has been a major driving
force behind many of the innovations in both the logical and object paradigm.

3 Shifting from substance to extension

A shift from substance to extension is at the core of the re-engineering to the logical par-
adigm. As we shall see, both the logical and object paradigms put extension in the cen-
tral place that substance occupies in the substance paradigm. Here we take a historical
look at how the substance pattern was undermined and the benefits of extension recog-
nised.

BUSINESS
MODEL SIGN

REFERS TO BUSINESS
OBJECT

refers to

yb ot derref er si

 REFERENCE PRINCIPLE

BANK

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
92 Chapter 5 The Emergence of the Logical Paradigm

3.1 Appreciating the difference between appearance and reality

After the development of the microscope in the 17th century, people started seriously
questioning the substance paradigm. Before its development, most people (and the
substance paradigm) assumed that the world was composed of natural everyday peo-
ple-sized things, such as tables and chairs. And that these things had attributes that
people saw and touched directly.

The microscope that changed all this. People looking through it could see that everyday
people-sized things were really composed of particles smaller than the unaided eye
could see. It soon became clear that attributes, such as taste and smell, were ideas cre-
ated by the mind from the sensations of these small particles rather than inherent in
either the people-sized things or the particles.

3.2 The problem with substance

This created a climate of doubt that naturally led to questions about substance. The
ghostly hulk shown in Figure 4.1, which is left behind when we take away all of a thing’s
attributes, poses a problem. Not only has no one ever seen or touched such a thing; in
principle, no one can ever examine it directly. We can only see or touch its properties.
When these are gone, nothing is left for us to perceive. So we can never directly prove
its existence.

In the 17th and 18th centuries, thinkers began to voice their concerns. We now look at
those raised by the Englishman John Locke (1632–1704) and the Scotsman David
Hume (1711–1776). We first see how John Locke expressed qualms about substance.
Then, we see how David Hume (born seven years after Locke died) went much further,
calling substance an ‘unintelligible chimera’.

3.2.1 John Locke’s qualms

John Locke most famously expressed his dissatisfaction with unknown substance in
this passage from his book An Essay Concerning Human Understanding:

§1. Ideas of substances how made.

THE Mind being, as I have declared, furnished with a great number of the simple Ideas,
conveyed in by the Senses, as they are found in exteriour things, or by Reflection on its
own Operations, takes notice also, that a certain number of these simple Ideas go con-
stantly together; which being presumed to belong to one thing, and Words being suited to
common apprehensions, and made use of for quick dispatch, are called so united in one
subject, by one name; which by inadvertency we are apt afterward to talk of and consider
as one simple idea, which indeed is a complication of many Ideas together; Because, as I
have said, not imagining how these simple Ideas can subsist by themselves, we accustom
our selves, to suppose some Substratum, wherein they do subsist, and from which they do
result, which therefore we call Substance.

§2. Our Idea of Substance in general.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Shifting from substance to extension 93

So that if any one will examine himself concerning his Notion of pure Substance in gen-
eral, he will find he has no other Idea of it at all, but only a Supposition of he knows not
what support of such Qualities, which are capable of producing simple Ideas in us; which
Qualities are commonly called Accidents. If any one should be asked, what is the subject
wherein Colour or Weight inheres, he would have nothing to say, but the solid extended
parts: And if he were demanded, what is it, that that Solidity and Extension inhere in, he
would not be in much better case, than the Indian before mentioned; who, saying that the
World was supported by a great Elephant, was asked, what the Elephant rested on; to
which his answer was, a great Tortoise: But being again pressed to know what gave sup-
port to the broad-back’d Tortoise, replied, something, he knew not what. And thus here,
as in all other cases, where we use Words without having clear and distinct Ideas, we talk
like Children; who, being questioned, what such a thing is, which they know not, readily
give this satisfactory answer, That it is something; which in truth signifies no more, when
so used, either by Children or Men, but that they know not what; and that the thing they
pretend to know, and talk of, is what they have no distinct Idea of at all, and so are per-
fectly ignorant of it, and in the dark. The idea then we have, to which we give the general
name substance, being nothing, but the supposed, but unknown support of those Quali-
ties, we find existing, which we imagine cannot subsist, sine re substante, without some-
thing to support them, we call that Support Substantia; which, according to the true
import of the Word, is in plain English, standing under, or upholding.

3.2.2 David Hume’s scepticism about substance

David Hume went much further. He wrote about ‘the fictions of ancient philosophy con-
cerning substances’. His attack on substance was based, like Locke’s qualms, on our
inability to ever know anything about it.

Hume quite rightly recognised that substance played two roles. It was the home for
attributes and the means for things to preserve their identity over time (we examined
both when we looked at the substance paradigm in Chapter 4). Here is how Hume
describes the first role in his A Treatise of Human Nature:

Hence the colour, taste, figure, solidity, and other qualities combin’d in a peach . . . are
conceiv’d to form one thing. . . . But the mind rests not here. Whenever it views the object
in another light, it finds that all these qualities are different, and distinguishable, and sep-
arable from each other; which . . . obliges the imagination to feign an unknown some-
thing, or original substance and matter, as a principle of union and cohesion among these
qualities, and as what may give the compound object a title to be call’d one thing, not-
withstanding its diversity and composition.

As Hume pointed out, without substance to support it, our notion of attributes needs to
change:

The notion of accidents is an unavoidable consequence of this method of thinking with
regard to substances . . . nor can we forbear looking upon colours, sounds, tastes, figures,
and other properties of bodies, as existences, which cannot subsist apart, but require a
subject of inhesion to sustain and support them. For having never discover’d any of these
sensible qualities, where, . . . we did not likewise fancy a substance to exist; . . . [we] infer
a dependence of every quality on the unknown substance. The custom of imagining a

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
94 Chapter 5 The Emergence of the Logical Paradigm

dependence has the same effect as the custom of observing it wou’d have. This conceit,
however, is no more reasonable than any of the foregoing. Every quality being a distinct
thing from another, may be conceiv’d to exist apart, not only from every other quality, but
from the unintelligible chimera of a substance.

Hume is right about the close link between substance and attributes. As we shall see,
when the logical paradigm shifts from substance to extension, it has also to shift from
attributes to logical classes and tuples.

Hume also describes substance’s second role, preserving a thing’s identity over time:

When we gradually follow an object in its successive changes, the smooth progress of the
thought makes us ascribe an identity to the succession; . . . When we compare its situation
after a considerable change the progress of the thought is broke; and consequently we are
presented with the idea of diversity: In order to reconcile which contradiction the imagi-
nation is apt to feign something unknown and invisible, which it supposes to continue the
same under all these variations; and this unintelligible something it calls a substance.

Hume explained how we preserved identity in our minds. But, he could not explain what
was going on with the physical objects outside our minds. However, he was clear that
the conclusions our minds jumped to were not justified by what we sensed:

Objects have a certain coherence even as they appear to our sense; but this coherence is
much greater and more uniform, if we suppose the objects to have a continu’d existence;
and as the mind is once in the train of observing an uniformity among objects, it naturally
continues, till it renders the uniformity as compleat as possible. The simple supposition of
their continu’d existence suffices for this purpose, and gives us a notion of a much greater
regularity among objects, than what they have when we look no farther than our senses.

This problem of explaining how a thing’s identity is preserved over time is particularly
intractable. At the end of the following chapter, we look at the difficulties that the logical
paradigm has dealing with it. It is only when we come to the object paradigm that we
arrive at a satisfactory explanation.

3.3 The benefits of extension

It was doubts about what we know that led the French thinker, René Descartes (1596–
1650), to extol the benefits of extension. He was looking for ideas that could not be
doubted—and developed what has been called the ‘method of doubt’. When he applied
this method to physical bodies, he found that the one property that he could not doubt
was extension (in other words, its length, breadth and height). There was no question in
his mind that that extension was real.

Descartes still clung to the substance pattern, so he suggested that extension was the
primary essential attribute of substance. Extension is in many ways an updated version
of the Aristotelian category place—the fourth attribute category in Figure 4.19. This
fourth category is still deeply embedded in our way of speaking, such as when we say
‘someone is sitting in my place’.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering primary substance 95

Descartes also suggested that shape, size and motion were the only ‘modes’ (his name
for Aristotelian accidental attributes), and that all other attributes were mental phenom-
ena:

I observed that nothing at all belonged to the nature of essence of body except that it was
a thing with length and breadth and depth, admitting of various shapes and various
motions. I found also that its shapes and motions were only modes, which no power could
make to exist apart from it; and on the other hand that colours, odours, savours and the
rest of such things, were merely sensations existing in my thought, and differing no less
from bodies than pain differs from the shape and motion of the instrument which inflicts
it.

Descartes was suggesting that extension is the one property of bodies that cannot be
doubted. It is a very attractive suggestion because extension is such a basic aspect of
our perception of the world. We see and touch extension when we see and touch indi-
vidual objects, so (he argues) we cannot doubt it exists outside our mind. This gives
extension a striking advantage over attributes such as taste and smell, which appear to
exist in the mind. Descartes suggested a thought experiment to confirm the fundamen-
tal nature of extension:

We have only to attend to our idea of some body, e.g. a stone, and remove from it what-
ever we know is not entailed by the very nature of body. We first reject hardness; for if the
stone is melted, or divided into a very fine powder, it will lose this quality without ceasing
to be a body. Again, we reject colour; we have often seen stones so transparent as to be
colourless. We reject heaviness; fire is extremely light, but none the less conceived as a
body. Finally, we reject coldness and heat and all other such qualities; either they are not
what we are considering in thinking of the stone, or at least their changing does not mean
that the stone is regarded as having lost the nature of a body. We may now observe that
absolutely no element of our idea remains, except extension in length, breadth, and depth.

In the next section, we see how the logical paradigm re-uses Descartes’ extension pat-
tern.

4 Re-engineering primary substance

We start our re-engineering of the substance paradigm with its primary substance for
particular bodies.

4.1 Bodies as extension

In the substance paradigm, the foundation of a particular body is its underlying primary
substance (to which its primary attributes belonged). The logical paradigm uses a differ-
ent foundation upon which to build its pattern for bodies. It follows through on Des-
cartes’ lead and uses extension (length, breadth and height) as its foundation. (It uses
extension as a replacement for substance, not—as Descartes did—an essential
attribute.) So when I shift from the substance to the logical paradigm, I shift from seeing
my car as a primary substance to seeing it as an extension (shown in Figure 5.3).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
96 Chapter 5 The Emergence of the Logical Paradigm

Figure 5.3:
My car

The two patterns of particular extension and reference complement one another per-
fectly here. Without extension we would not have anything tangible to refer to. It gives
us a strong sense for reference. Because we can point to what we are referring to, we
can specify it accurately. Individual physical objects, such as my car, provide a good
role model for strong reference. The task we face is making all the other types of objects
so well behaved.

4.2 What happened to primary substance’s attributes?

As Figure 5.3 suggests, we have only covered half the distance. In the Aristotelian par-
adigm, particular bodies, such as my car, are composed of primary substance and pri-
mary attributes. While extension can replace substance, we also have to find something
to replace attributes. It turns out that classes fit the bill, but first we look at why primary
attributes need re-engineering.

4.2.1 The problem with primary attributes

The problem with primary attributes is that it is difficult, under a scheme of strong refer-
ence, to see what we might be referring to when we talk of them. In the substance para-
digm, they are mysterious things that attach themselves to even more mysterious
substance.

Once the logical paradigm had re-engineered substance into extension, it might have
seemed sensible to stop there and let extension take over substance’s role of having
attributes belong to it. My car would then be composed of its extension and various
properties that belong to the extension. As Figure 5.4 illustrates, this scheme of things
has a similar pattern to the substance paradigm.

Height

htdaerB

Length

ARISTOTELIAN SUBSTANCE LOGICAL EXTENSION

RED

COLOUR

P
R

IM
A

R
Y

A
T

T
R

IB
U

T
E
S

PRIMARY SUBSTANCE

etc.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering primary substance 97

Figure 5.4:
My car’s extension
with attributes

However, this would have caused problems. Under the logical paradigm’s strong refer-
ence principle, all things have to have an extension—one that we can point to. So, if
extensions had primary attributes, these attributes (as things) would have to have
extension. This would have been the source of all sorts of problems.

For a start, we would not have been able to work out where we could find a primary
attribute (as extension). Consider, for example, my car’s primary attribute of redness. It
could not exist everywhere the car does—in other words, have the same extension as
the car. If it did, it would be the same object as the car. It could not be a part of the car,
such as the front half of the car, because other parts, such as the back half, are red. It
could not exist somewhere else apart from the car. That would not make sense. There
is just nowhere for the extension to exist.

We can push this further. Assume that we had somehow found a satisfactory extension
for my car’s primary attribute of redness. Still, there is a problem. As the red attribute
has extension, it is an object and can have properties. Assume we examine the exten-
sion, taste it and weigh it. We find it tastes metallic and weighs ten pounds. The notion
of a primary red attribute having a taste is odd. What is even odder is that we can, in
principle, look and see what colour attribute it has. Let’s play safe and assume it is red.
This means my car’s primary attribute of redness has a primary attribute of redness.
This second level red attribute is still an attribute and so is an extension. Let’s assume
we can found the extension (remember it cannot be the same extension as the first level
attribute or else they would be the same thing). We can ask what colour the new exten-
sion is and so on ad infinitum.

Making attributes extensions something they were not intended to be leads to odd and
contradictory results. It should be becoming clear that this is a pointless exercise
because primary attributes were never designed to be extensions. Extensions, the
basis for strong reference, and primary attributes are parts of two completely frame-
works. Primary attributes are meant to be attached to substance not extensions.
Attributes need to be re-engineered into something compatible with extension.

RED

COLOUR E
X

T
E
N

S
IO

N
'S

P
R

O
P

E
R

T
IE

S

etc.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
98 Chapter 5 The Emergence of the Logical Paradigm

4.2.2 The solution—transform primary attributes into classes

In the late 19th century, Georg Cantor provided the tool needed for this re-engineering.
He invented the notion of a class and defined it as:

. . . the result of collecting together certain well-determined objects of our perception or
thinking into a single whole; these objects are called the elements of the set.

The key phrase is ‘a single whole’. This transforms a collection of objects into a single
object.

Gottlob Frege was one of the few mathematicians to recognise the importance of Can-
tor’s work when it first appeared. One of the uses to which he put it was re-engineering
the attribute pattern into a class pattern. We can see how this works in our car example.
My car’s red attribute is transformed into my car being a member of the class of red
things (shown in Figure 5.5). From the logical paradigm’s viewpoint, when I say ‘my car
is red’, I mean that ‘my car belongs to the class of red things’ and not ‘my car has the
mysterious primary attribute of redness’.

Figure 5.5:
My car belongs to
the class of red
things

After Frege’s transformation, there was no need for the extensionless attribute pattern.
Classes, the transformed attributes, have an extension soundly rooted in the extensions
of the objects belonging to the class. They can be referred to in a strong sense. As my
car is an extension, so the class of red things is a collection of extensions (shown in
Figure 5.6). This gave the logical paradigm a simpler and stronger semantic framework.

Figure 5.6:
Referring to the
class of red things

RED THINGS

RED THINGS

C
O

N
C

E
P

T
S

O
B

JE
C

T
S

r
e
fe

r
s

t
o

RED THINGS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering primary substance 99

4.2.3 Referring to classes

When dealing with the extension of classes, the strong reference principle forces us to
see them more accurately than usual. In everyday life, we do not always clearly distin-
guish between a collection and a fusion of extensions. When using classes to business
model, however, we need to. This simple example shows what happens if we do not
make the distinction. (It is taken from Willard Van Orman Quine’s book From a Logical
Point of View.)

Figure 5.7:
Our world

Assume that Figure 5.7 is our world and that its 33 regions are our individual objects.
We now classify the regions into these shapes:

• An isosceles right triangle,
• A square,
• A two-to-one rectangle, and
• Two types of trapezoid.

Figure 5.8:
Shapes’ collected
extensions

TWO TO ONE
RECTANGLES

r
e
fe

r
s

t
o

TWO TO ONE
RECTANGLES

O
B

JE
C

T
S

C
O

N
C

E
P

T
S

SQUARES

r
e
fe

r
s

t
o

SQUARES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
100 Chapter 5 The Emergence of the Logical Paradigm

From a logical paradigm viewpoint, these shapes are classes of individual objects. Now,
we assume (incorrectly) that the extension of a class is the fusion of the extensions of
its members. Then the extension of the class squares is the complete figure, as,
between them, the five individual square shapes’ extensions cover the complete figure.
The extension of the four two-to-one rectangles is also the complete figure. In fact, all
the five shape classes have the complete figure as their extension. Because objects
with the same extension are identical, we are faced with the inescapable conclusion
that all the shape classes are the same object.

This is clearly wrong. The error is assuming that the extension of a class is the fusion of
its members’ extensions. It is not their fusion but their collection (shown in Figure 5.8).
This shows that what distinguishes the two-to-one rectangle and square shape classes
is that they have different collections of extensions.

Once we become familiar with this more accurate way of seeing classes, we begin to
see examples of it everywhere. Quine offers us another, less theoretical, example. He
asks us to consider the states of the USA and the counties of the USA. If we see either
the counties or the states classes as a fusion of their individual extensions, the result is
a single extension—the USA. However, if we see them as collections of their member’s
extensions, we get the correct result—two separate collections of extensions.

5 Re-engineering secondary substance

The logical paradigm’s transformation does not end there. We saw earlier how the class
pattern was used to re-engineer the primary attribute particle. Now, we see how it is
used to transform the secondary substance particle. In the substance paradigm, general
words referred to mysterious secondary substances. For example, the general word
‘pig’ referred to a mysterious secondary pig substance. Because no one has ever seen
or touched any secondary substance, this reference was weak. The logical paradigm
offered an alternative explanation of what general words referred to, one that used the
class pattern and so had strong reference.

From a logical paradigm viewpoint, general words, such as ‘pig’, refer to the class of
pigs. This is the collection of individual pigs. So when I say ‘Porky is a pig’, I mean that
‘Porky belongs to the class of pigs’ (shown in Figure 5.9) and not ‘Porky’s primary sub-
stance belongs to a (mysterious) secondary pig substance’.

Figure 5.9:
Porky belongs to
the class of pigs

PORKY

PIGS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Re-engineering secondary attributes 101

Like the class of red things (shown in Figure 5.6), the class of pigs has an extension.
This is the collection of individual pig extensions illustrated in Figure 5.10.

Figure 5.10:
Referring to the
class of pigs

6 Re-engineering secondary attributes

Re-engineering the secondary substance particle still does not exhaust the power of the
class pattern. It was used to transform the substance paradigm’s last fundamental parti-
cle—the secondary attribute particle.

These secondary attributes could either belong to a secondary substance or live in an
independent hierarchy. For example, the secondary substances car and sock both have
a dependent secondary colour attribute, which are both related to an independent sec-
ondary colour attribute (shown in Figure 5.11).

Figure 5.11:
Two types of sec-
ondary colour
attributes

In the substance paradigm, the two types of secondary attribute served two distinct pur-
poses. The independent attributes were used to describe the hierarchy of attributes and
the dependent attributes to show their connections to substances. The logical paradigm
uses the class pattern to re-engineer both types of secondary attribute, ‘killing two birds
with one stone’.

C
O

N
C

E
P

T
S

O
B

JE
C

T
S

PORKY

PIGS

r
e
fe

r
s

t
o

PIGS

Dependant
Secondary Attributes

Independant
Secondary Attributes

GREENRED

COLOUR

CAR

SOCK

COLOUR

COLOUR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
102 Chapter 5 The Emergence of the Logical Paradigm

In some cases it re-uses the class re-engineered from a primary attribute. For example,
the class pattern for red things in Figure 5.5 re-engineered from my car’s primary
attribute of redness is re-used to capture the independent secondary red attribute pat-
tern in Figure 5.11, as shown in Figure 5.12.

Where there are corresponding dependent and independent secondary attributes,
these are re-engineered into a single class. For example, the dependent and independ-
ent secondary colour attributes in Figure 5.11 are re-engineered into the single class,
coloured things (shown in Figure 5.12). This is not the same as the colours class, with
red and green as members, which we re-engineer in the next chapter.

Figure 5.12:
Re-engineering
the two secondary
colour attributes

We are beginning to see incontrovertible evidence that the logical paradigm’s class pat-
tern works at a more general level than the substance paradigm’s patterns. It has sin-
gle-handedly replaced both substance and attribute patterns, primary and secondary.

7 Re-engineering relational attributes

In Chapter 3, we looked at the substance paradigm’s semantics for relational attributes
and saw that its treatment was awkward. We examined some of the problems that
attributes had in capturing the relationship pattern. This awkwardness comes out of the
woodwork in our re-engineering of relational attributes. The pattern we used earlier to
transform primary attributes into classes cannot be applied to primary relational
attributes. They are a different kind of thing and need a different approach. We now look
at this, but first we remind ourselves of the substance paradigm’s relational attribute pat-
tern and its problems.

7.1 Relational and correlational attributes

We saw in Chapter 3 how Aristotle fitted primary relational attributes into his sub-
stance–attribute structure using a relational attribute pattern. He took a sentence such
as:

Queen Elizabeth is the mother of Prince Charles.

and analysed it as follows. The subject of the sentence, ‘Queen Elizabeth’ is a sub-
stance. The predicate ‘is the mother of Prince Charles’ is a relational attribute belonging

SUBSTANCE PARADIGM LOGICAL PARADIGM

COLOURED
THINGS

RED
THINGS

GREEN
THINGS

CAR

COLOUR

GREENRED

COLOUR

CARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Re-engineering relational attributes 103

to the Queen Elizabeth substance. He was well aware that there was another sentence
that described the same relationship:

Prince Charles is the son of Queen Elizabeth.

Figure 5.13:
Relational and cor-
relational
attributes

He analysed this as the corresponding correlational ‘is the son of Queen Elizabeth’
attribute of the Prince Charles substance. The relational and correlational attributes are
illustrated in Figure 5.13 (reproduced from Figure 3.21).

7.1.1 The problem with relational attributes

We saw in Chapter 3 two semantic problems with relational (and correlational)
attributes. First, the connection between the relational and correlational attribute, shown
by a line in Figure 5.13, is not explicitly captured in the substance paradigm. There rela-
tional attributes—like all attributes—belong to only one substance.

Secondly, the substance paradigm uses two attributes to capture a single relationship. It
is perhaps easier to think of this as two signs (two relational attribute signs belonging to
different substance signs) referring to one relationship in the world. This is clearly a
breach of the strong reference principle (shown in Figure 5.2) that expects each object
to be referred to by one and only one sign. Dropping one of these attributes, as the
entity paradigm does, resolves this problem but leads (as we saw in Chapter 3) to its
own semantic problems.

7.2 The solution—connection objects

The logical paradigm resolved these problems by introducing a new type of object to
help capture the relationship pattern, the tuple.

7.2.1 Solving the reference problem

This new object, like the class object, comes from mathematics. There, a connection
between two things is treated as having two components, a tuple and a tuples class
(where tuple is the general name for couple, triple and so on). It is easier to see how

P
R

IM
A

R
Y

L
E
V

E
L

PRINCE
CHARLES

QUEEN
ELIZABETH

SONMOTHER

MOTHER OF SON OF

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

SON OF

QUEEN
ELIZABETH

MOTHER OF

PRINCE
CHARLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
104 Chapter 5 The Emergence of the Logical Paradigm

these components work in an example. So let us re-consider the connection described
by the sentence:

Queen Elizabeth is the mother of Prince Charles.

A mathematical version of this has two components:
• A couple (a tuple of two objects), and
• A tuples class.

Figure 5.14:
Referring to the
<Queen Eliza-
beth, Prince
Charles> couple

The couple (also known as an ordered pair) is constructed from the Queen Elizabeth
and Prince Charles objects. It is normally written as:

<Queen Elizabeth, Prince Charles>.

Because this is constructed out of individual objects with extensions, the tuple, like a
class, is rooted in their extensions (shown in Figure 5.14). This means we can refer to it
directly.

Figure 5.15:
Collected together
‘is a mother of’
tuples class

r
e
fe

r
s

t
o

C
O

N
C

E
P

T
S

O
B

JE
C

T
S

<QUEEN ELIZABETH, PRINCE CHARLES>

QUEEN
ELIZABETH

PRINCE
CHARLES

Tuples Class

CoupleQUEEN
ELIZABETH

PRINCE
CHARLES

PRINCESS
DIANA

PRINCE
HARRY

PRINCESS
DIANA

PRINCE
WILLIAM

IS A MOTHER OF

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Re-engineering relational attributes 105

We now have a new type of fundamental particle, a tuple. Because it is an object, we
can apply the class pattern to it. As Cantor explained, any object can be collected into a
class. So tuples can be collected into a class. For example, we can construct the ‘is a
mother of’ tuples class by collecting together the couples that would belong to it—
including <Queen Elizabeth, Prince Charles>. Figure 5.15 shows the result.

So we can now translate the sentences ‘Queen Elizabeth is the mother of Prince
Charles’ and ‘Prince Charles is the son of Queen Elizabeth’ into logical-speak. They
both become:

<Queen Elizabeth, Prince Charles> is a member of the ‘is a mother of’ tuples
class.

7.2.2 Connections between more than two objects

The substance paradigm’s relational attributes work for connections between two sub-
stances. The logical paradigm’s tuples are more powerful. They can handle connections
between any number of objects. Consider this sentence, which describes a three–way
connection:

Prince William is the son of Prince Charles and the brother of Prince Harry.

This translates into the triple:
<Prince William, Prince Charles, Prince Harry>,

which is a member of the tuples class,
X is the son of Y and the brother of Z.

The following triples are also members of the same tuples class.
<Prince Harry, Prince Charles, Prince William>, and
<Prince Charles, Prince Philip, Prince Andrew>.

7.2.3 Tuple and relational attribute identity

This ability to handle multiple connections shows that the tuple pattern is fundamentally
different from the relational attribute pattern. We can illustrate quite neatly just how dif-
ferent by comparing how identity works for relational attributes and tuples. In other
words, comparing when two relational attributes or tuples are the same or different.
Consider the connections described by the following sentences:

Prince Charles is the father of Prince William.
Prince Charles is taller than Prince William.

From a substance paradigm viewpoint, the Prince Charles substance has two relational
attributes (we ignore the correlational attributes in this example). From a logical para-
digm viewpoint, there are not two attributes but a single couple belonging to two classes
(shown in Figure 5.16).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
106 Chapter 5 The Emergence of the Logical Paradigm

Figure 5.16:
Tuple identity

Where the substance paradigm uses father of and taller than relational attributes (and
their correlational attributes) the logical paradigm uses the single <Prince Charles,
Prince William> couple. The substance paradigm implies that there are two connections
out there in the world. The logical paradigm assumes that only one connection belongs
to two classes. This is quite a different way of seeing things. I have found that people
adept at seeing in the old relational attribute way take quite a while to get proficient in
this new way.

You may have noticed that Figure 5.16 also shows an important implication of tuples
being objects and that they can be collected into more than one class.

7.2.4 Modelling many-to-many connections with tuples

In Chapter 3, we looked at the problem the substance paradigm had capturing a ‘many-
to-many’ connection pattern. We also looked at two solutions within the paradigm—cre-
ating ‘pseudo’ entities and creating a new relationship particle. These were illustrated in
Figures 3.24 and 3.25. We saw that both of these ‘solutions’ have semantic problems;
their ‘pseudo’ entities and relationship particles have difficulty referring to the world
directly.

The logical paradigm’s semantics for many-to-many connections has no such problems.
We can see this if we re-consider the employee/project example in Chapter 3. Figure
3.23 shows a number of employees working on a number of projects, including:

Employee Sue working on project #1.
Employee Sue working on project #2.
Employee John working on project #2.

From a logical paradigm viewpoint, we see this as these tuples,
<Sue, project #1>,
<Sue, project #2>, and

PRINCE
CHARLES

PRINCE
WILLIAM

IS A FATHER OF IS TALLER THAN

PRINCE
WILLIAM

PRINCE
CHARLES

PRINCE WILLIAM

TALLER THAN

PRINCE WILLIAM

FATHER OF

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
8 Simplifying and generalising the information framework 107

<John, project #2>

belonging to an ‘employee works on project’ tuples class. There is no semantic problem
as the tuples (and tuples class) are objects with extensions.

7.2.5 Compacting with tuples

We can use this employee/project example to illustrate how tuples can compact infor-
mation. In the example, assume that Sue manages project #1. From a substance para-
digm viewpoint, we see this as a new ‘managed by Sue’ relational attribute of the
project #1 substance (ignoring the correlational attribute). From a logical paradigm view-
point, there is no new object. Instead, we see the <Sue, project #1> couple, which we
used in the ‘employee working on project’ tuples class, belonging to a managed by
tuples class. The two views are illustrated in Figure 5.17. See how the three relational
attributes are re-engineered into a single tuple.

It is interesting to compare this with the way relational databases work. These make
explicit use of the mathematical tuples pattern. But because they do not treat the tuple
as an object that can belong to a number of classes, they cannot use a single tuple to
describe the two ‘relationships’. So they cannot compact information in the way shown
in this example. In many ways, relational databases are more interested in operationally
managing the rows and columns of stored computer information than in constructing a
consistent semantics.

Figure 5.17:
Tuples compact-
ing information

8 Simplifying and generalising the information framework

The logical paradigm’s framework is not only more general than the substance para-
digm’s, it is simpler. This is the sign of a good re-engineering. Look at
Figures 5.18 and 5.19. These illustrate how the logical paradigm uses less to do more.
In Figure 5.18, the dependent and independent secondary colour attributes both map

SUEPROJECT
#1

SUE/
PROJECT
#1

PROJECT #1

PROJECT

SUE

EMPLOYEE

SUE
PROJECT

#1

MANAGES

MANAGED BY

SUE

WORKS ON

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
108 Chapter 5 The Emergence of the Logical Paradigm

onto one class, coloured things. Furthermore, the primary red attribute and the inde-
pendent secondary red attribute map onto the single class, red things. In Figure 5.19,
the primary relational attribute maps onto the <my car, me> couple and the secondary
relational attribute maps onto the owned by tuples class.

Figure 5.18:
Comparing the
paradigms—
classes and mem-
bers

There are also fewer, more general, types of thing—the logical paradigm only needs
three sub-types of the general type – logical objects;:

• Logical classes,
• Logical tuples, and
• Individual logical objects.

Figure 5.19:
Comparing the
paradigms—a
tuples class and its
member

This can be seen clearly in the more general comparison of frameworks in Figure 5.20.
This shows how, in the re-engineering, the distinction between substance and attributes
disappears completely. For instance, both secondary substance and secondary
attributes are transformed into classes.

SUBSTANCE PARADIGM LOGICAL PARADIGM

CAR

COLOUR

MY
CAR

RED

COLOURED
THINGS

RED
THINGS

RED

COLOUR

COLOUR

CARS

SUBSTANCE PARADIGM LOGICAL PARADIGM

ME

PERSON CAR

OWNED BY

MY
CAR

OWNED BY

OWNED BY
ME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
9 Summary 109

Figure 5.20:
Comparing the
frameworks

9 Summary

In this chapter we have re-engineered the substance paradigm’s fundamental particles
into their logical equivalents. We have just seen how this gives us a simpler and more
general framework. However, this is just the bare bones of the framework. In the follow-
ing chapter, we put the flesh on these bare bones.

GENERAL
SUBSTANCE

PARTICULAR
SUBSTANCE

LOGICAL PARADIGMSUBSTANCE PARADIGM

RELATIONAL
ATTRIBUTE

RELATIONAL
ATTRIBUTE

NON-RELATIONAL
ATTRIBUTE

NON-RELATIONAL
ATTRIBUTE

NON-RELATIONAL

RELATIONAL

INDIVIDUAL
LOGICAL
OBJECTS

LOGICAL
TUPLES

LOGICAL CLASSES

LOGICAL OBJECTS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
110 Chapter 5 The Emergence of the Logical Paradigm

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 6
The Logical Paradigm’s Framework

1 Introduction

2 A sense framework for logical objects

3 An environment that encourages compacting

4 The problem with logical changes

5 The four key types of things

6 A new, conceptually more accurate, logical way of seeing things

7 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
112 Chapter 6 The Logical Paradigm’s Framework

1 Introduction
In the previous chapter we re-engineered the fundamental particles of the logical para-
digm. This gave us a skeleton framework, which we flesh out in this chapter. As we do
this, we will see how the new paradigm leads to a conceptually more accurate way of
seeing.

2 A sense framework for logical objects

In the previous chapter, we focused on the extension–reference element in meaning’s
sense–reference combination. We now look at the sense element—at the types of
structures or patterns that logical objects form. This helps to fill out the meaning (and so
our understanding) of the paradigm.

When logical classes and tuples are used to describe things, several useful general pat-
terns regularly appear. These give the paradigm its sense framework. We look at two of
its key patterns, the super–sub-class pattern and the class–member pattern. We also
spend some time looking at an important class pattern—classes of classes—that the
substance paradigm is not powerful enough to capture.

2.1 The super–sub-class pattern

The substance paradigm recognised a restricted form of the super–sub-class pattern in
its secondary level hierarchies (which we looked at in Chapter 3). However, there was
no semantic explanation of why the hierarchies existed, or what they were. The logical
paradigm provides one and, at the same time, enhances the power of the pattern.

In the substance paradigm, secondary substances were arranged in a hierarchy of gen-
erality. For instance, animal substance was regarded as more general than pig sub-
stance and so had a higher position in the hierarchy. However, no real reason for this
was given; it was taken as obvious. While it is obviously true that animal is more general
than pig, it is not so clear why this is so within the substance paradigm. However, given
that the notion of substance is so mysterious, this additional mystery is probably of little
consequence.

Things are very different with classes. It is easy to explain why the class animals is
more general than the class pigs and so what the hierarchy of generality is. The class
animals is regarded as a super-class of the class pigs, which means that every member
of the class pigs is also a member of the class animals. The class animals includes the
class pigs and so it is put above it in the super–sub-class hierarchy (shown in Figure
6.1). There is a perfectly straightforward physical explanation for the super–sub-class
pattern; it is no semantic mystery.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 A sense framework for logical objects 113

2.1.1 Logical class ‘inheritance’

One useful aspect of the secondary hierarchies in the substance paradigm was the
inheritance pattern. In Chapter 4, we looked at how the colour attribute was inherited by
the car and van substances from vehicle substance (shown in
Figure 4.15). However, within the substance paradigm, we cannot explain what this
inheritance pattern actually is.

Figure 6.1:
The super–sub-
class pattern

The inheritance pattern is not lost in the shift to the logical paradigm, but it has a differ-
ent basis—classes. You can see this in Figure 6.2, which shows the pattern shifting. In
the logical paradigm, the ‘inheritance’ of the colour attribute is explained by the super–
sub-class hierarchy. The classes cars and vans are coloured because they are included
in the class vehicles, which is included in the class coloured. The super–sub-class pat-
tern provides a reassuringly tangible explanation for inheritance.

Figure 6.2:
The shift to logical
class ‘inheritance’

2.1.2 Logical class ‘multiple inheritance’

In Chapter 4, we also identified a constraint on the secondary substance hierarchy
down which attributes were inherited. It had a tendency towards what O-O calls single
inheritance (see Section 4.3.1.3, "Single inheritance and OOPs"). In the logical para-
digm, with its super–sub-class pattern, this constraint does not exist. Let’s look at this
less constrained structure.

ANIMAL

PIG

S
E
C

O
N

D
A

R
Y

S
U

B
S
T
A

N
C

E
H

IE
R

A
R

C
H

Y

S
U

P
E
R

-S
U

B
-C

L
A

S
S

H
IE

R
A

R
C

H
Y

PIGS

ANIMALS

SUBSTANCE
PARADIGM

LOGICAL
PARADIGM

...

ANIMALS

PIGS

SUBSTANCE PARADIGM LOGICAL PARADIGM

VEHICLE

CAR VAN

COLOUR

COLOUR COLOUR

VEHICLES

COLOURED

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
114 Chapter 6 The Logical Paradigm’s Framework

The single inheritance constraint meant a less general secondary substance could only
belong to a single more general substance. In structural terms, it restricted the hierarchy
to a tree ordering. In the logical paradigm, this constraint does not exist—a class can
have as many super-classes as is needed. This results in a lattice ordering hierarchy,
which O-O calls multiple inheritance.

Figure 6.3:
Logical class ‘mul-
tiple inheritance’

The example in Figure 6.3 illustrates the differences between the two hierarchies. In
the substance paradigm, single inheritance stops us from seeing the secondary boar
substance as a combination of the more general pig and male animal substances.
Whereas, in the logical paradigm, this is the natural way to see it. The class boars is
clearly the result of intersecting the classes pigs and male animals. It is easy to see this
intersection’s lattice structure in the class hierarchy diagram on the right-hand side of
Figure 6.3, where the classes boars and sows both have two super-classes.

2.2 The class–member pattern

The logical paradigm has a new hierarchy pattern, one that did not (and cannot) exist in
the substance paradigm—the class–member pattern. And with it comes a new type of
class object, a class whose members are also classes. When re-engineering entity sys-
tems, I am constantly surprised at the number of implicit classes of classes they con-
tain. We will come across a good example of an implicit class of classes in the re-
engineering of country full names attributes in Chapter 12 (shown in Figure 12.30.)

2.2.1 A weak pattern for classes

As noted in the last chapter, when Cantor defined a class, he defined it as an object that
could be collected into a class. However, people steeped in a pre-class way of seeing
things find this notion difficult to grasp. They often only take on board a weak pattern for
classes. For example, this has happened in most object-oriented programming lan-
guages (OOPLs).

The weak pattern for classes sees a class as a collection, but does not see that a class
is an object—only particular objects are objects. In this scheme of things, the idea of
collecting together classes into a class cannot arise because weak classes are not
objects and so cannot be collected together into a class.

BOARS

PIGS

MALE
ANIMALS

FEMALE
ANIMALS

ANIMALS
ANIMALS

MALE
ANIMALS

FEMALE
ANIMALS

BOARS SOWS
PIGS

SOWS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 A sense framework for logical objects 115

This is a major structural constraint. Classes collect together things that are similar—
things that have similar patterns. Classes themselves can have similar patterns. How do
we capture this insight if we cannot collect them together into a class? We cannot.

2.2.2 A class of classes

To help us get a good grasp of the strong notion of a class, we start by looking at a cou-
ple of simple examples, colours and car types.

2.2.2.1 A common example of a class of classes—colours

The colours class (which has individual colours, such as red and green, as members) is
a class of classes. This idea can take some getting used to. Most people think of the
colours red and green as abstract, intangible individual objects, which makes the class
of these colours abstract and intangible as well.

The logical paradigm takes a very different view, which we work our way up to in this
thought experiment. Assume I have two red shapes on a table. Under the logical para-
digm, they belong to the class red. We now have three objects in the real world, two
individual objects and one class object (shown in Figure 6.4).

Figure 6.4:
Two red shapes

2.2.2.2 Expanded to colours

Now, assume that two more shapes, this time green shapes, are put on the table. Under
the logical paradigm, they belong to the class green. I can now generalise across the
classes red and green to their super-class coloured (shown in Figure 6.5). I could do
something similar in the substance paradigm, generalising the independent secondary
red and green attributes into an independent secondary colour attribute. This was
shown in Figures 4.12 and 4.13.

O
B

JE
C

T
S

RED

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

C
O

N
C

E
P

T
S

RED THING
#1

RED THING
#2

r
e
fe

r
s

t
o

RED

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
116 Chapter 6 The Logical Paradigm’s Framework

Figure 6.5:
The class coloured

Then, I do something new and different. Something I cannot do in the substance para-
digm. I consider the red and green classes as objects and collect them together into a
class, colours (shown in Figure 6.6). I can do this because classes are objects and all
objects, even class objects, can be collected into a class. The class colours is very dif-
ferent from the class coloured. Figure 6.5 shows that the class coloured has the red
and green shapes as its members. Whereas Figure 6.6 that shows the class colours
has the class red and the class green as its members.

Figure 6.6:
The class colours

The form of diagram used in Figure 6.6 is not wholly satisfactory. A class object (such
as red) that is also a member of another class has to be signed twice. In this case, once
as a lozenge on top of the red class oval sign containing the red member signs and
again as just a lozenge inside the colours class oval sign. We will look at a better form of
diagramming when we examine the object notation in Part Five.

C
O

N
C

-
E
P

T
S

O
B

JE
C

T
S GREENRED

COLOURED

r
e
fe

r
s

t
o

COLOURED

p

C
O

N
C

-
E
P

T
S

O
B

JE
C

T
S

r
e
fe

r
s

t
o

COLOURS

GREEN

GREEN

COLOURS

RED

RED

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 A sense framework for logical objects 117

2.2.2.3 Another common example of a class of classes—user-defined car types

Classes of classes are not just of academic interest. Almost every system of a reasona-
ble size has a number of them. However references to them tend to be implicit. System
parameters and user-defined types are often classes of classes. Account types, invoice
types, and deal types are all classes of classes.

System builders are now so familiar with these type objects that often they can—with lit-
tle or no analysis—intuitively work out how to implement them. The ease and familiarity
of their implementation means that the obvious, but awkward, semantic questions that
should arise during business modelling are not asked. Questions such as:

What are these objects? and
What do they model in the business?

We now ask these question about one such user-defined type—car types. Consider a
simple computer system with user-defined car types constructed using a weak pattern
for classes (in other words, classes of classes are not allowed). Most current systems
are like this. To keep it simple, we only consider information about cars and car types in
the system.

We assume that the users keep records of car types on a file. On each record they set a
small car type indicator field to yes or no. We interpret this as implying that each car
types record refers to an individual object belonging to the car types class. If a record’s
small car type indicator is set to yes, then we infer that the individual car type also
belongs to the small car types class. This makes the small car types class a sub-class
of the car types class.

We assume that the users also keep records of cars on a file, which can be linked to an
appropriate car types record. We interpret this as saying that each car record refers to
an individual object belonging to the cars class. The individual object is also linked to an
object belonging to the car types class by a tuple belonging to the types-of tuples class.

Figure 6.7:
Original system

Assume that the users have already set up a record of one type of car—Minis—and set
its small car type indicator ‘field’ to yes. They have also set up records of four cars—Car
123, Car # 456 Car # 789 and Car # 890. Where Car #s 456 and 789 are Minis and so
the users link their records to the individual car type record for Minis. The situation rep-

MINIS

S
Y

S
T

E
M

-
D

E
F
IN

E
D

U
S
E
R

-D
E
F
IN

E
D

CAR TYPES

SMALL CAR
TYPES

TYPES OFCARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
118 Chapter 6 The Logical Paradigm’s Framework

resented by the system is diagrammed in Figure 6.7. This pattern of cars and their
types will be familiar to most system builders.

Now, we ask the obvious question raised by the strong reference principle. What is an
individual car types object, such as Minis, in the outside world? This will tell us what the
cars types and small car types classes are. To answer the question, we need the strong
notion of class, which allows classes to be members of classes.

From a logical paradigm viewpoint the answer is clear. Minis is not an individual object,
but a class —the class of Minis. Cars #456 and #789 are members of it. This makes the
car types class a class of classes. The small car types class is also a class of classes. It
is the class of all the car types that are small, so Minis belongs to it. This gives us the
structure in Figure 6.8.

Figure 6.8:
Car types as a
class of classes

It is easier to see the class–member pattern if we show it as a hierarchy (shown in Fig-
ure 6.9). Compare this hierarchy with that in Figure 6.7. Just by looking at the two, we
can see that the class–member hierarchy has a simpler more coherent structure.

Figure 6.9:
Car types class–
member hierarchy

#456#890

MINIS

SMALL CARS

MINIS

CARS

CAR TYPES

S
Y

S
T

E
M

-
D

E
F
IN

E
D

U
S
E
R

-
D

E
F
IN

E
D

CAR #890 CAR #123 CAR #456 CAR #789

member

rebmem

r
e

b
m

e
m

CARS
CAR

TYPES

SMALL
CARS

MINIS

S
Y

S
T

E
M

-
D

E
F
IN

E
D

U
S
E
R

-
D

E
F
IN

E
D

SUB CLASS

SUB CLASS

member

m
e
m

b
e
r

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 A sense framework for logical objects 119

The weak class pattern forced us to make Minis an individual object because we
wanted it to be a member of the car types class. This meant that it had to be linked back
to the individual minis by a contrived types-of tuples class.

By contrast, the strong class pattern allows us to recognise that Minis is a class and
also a member of car types. The resulting class–member hierarchy is more expressive,
making clear the nature of minis and car types. The class of classes structure enables
us to see in a simpler, clearer (and more accurate) way, and so gives us a semantically
richer understanding of what the files and records really refer to.

2.2.3 Unconstrained class–member tuples

In Chapter 4 (see Figures 4.17 and 4.18), we identified that the way we saw substance
tended to place two constraints on how primary substance could belong to secondary
substance:

• single classification, and
• static classification.

The logical paradigm’s replacement for secondary substance, classes, does not force
these constraints on us. In fact, in its class–member pattern, they do not make sense.
We shall see later on in this chapter how this greatly enhances the conceptual power of
the paradigm. Here, we see how the class–member pattern enables:

• multiple classification, and
• dynamic classification.

Figure 6.10:
Logical class ‘mul-
tiple classification’

IN
D

IV
ID

U
A

L
L
E
V

E
L

S
U

P
E
R

-S
U

B
-C

L
A

S
S

H
IE

R
A

R
C

H
Y

PIGS
MALE

ANIMALS

PORKY

ANIMALS

P
R

IM
A

R
Y

L
E
V

E
L

G
E
N

E
R

A
L

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

ANIMAL

PIG

BOAR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
120 Chapter 6 The Logical Paradigm’s Framework

2.2.3.1 Logical class–member ‘multiple classification’

In the substance paradigm, a primary substance could only belong to one secondary
substance. For instance, if Porky the boar belonged to boar secondary substance, he
could not belong to any other secondary substance. In the logical paradigm, an individ-
ual object can belong to as many classes as is needed. So Porky could belong to the
pigs class and the male animals class (shown in Figure 6.10). This is useful, because it
eliminates the need for a boar class. We examine how this enables us to compact more
information into less structure later on in this chapter.

As we saw in Chapter 4 (see Figure 4.16), the substance paradigm can, to an extent,
escape from its single classification structure, using attributes. It does this by mimicking
a limited version of multiple classification. A primary substance cannot belong to more
than one secondary substance. But, through its primary attributes, it can have more
than one link to the secondary level. Figure 6.11 has an example of this. There, both
Porky and Porkette have two links to the secondary level; one to pig secondary sub-
stance, the other to a secondary gender attribute. This gives us a similar lattice struc-
ture to the multiple classification in Figure 6.10.

Figure 6.11:
Multiple secondary
links

2.2.3.2 Logical class–member ‘dynamic classification’

Primary substance was also constrained by static classification. If a primary substance
belonged to a secondary substance, it always belonged to it; that could not change. For
instance, if Porky the boar belonged to boar secondary substance, he always belonged
to it.

The logical paradigm’s class–member pattern enables dynamic classification —a less
constrained structure. This means an individual object can change classes if that is
what is needed. For example, if they bring in sex-change operations for pigs and Porky
chooses to become a Porkette, then we can see this as he/she dynamically transferring
from the class boars to the class sows (diagrammed in Figure 6.12). The logical para-
digm needs to explain this commonplace business pattern; one where bank accounts
become overdrawn and deals settlements become overdue. Dynamic classification is

PIG

P
R

IM
A

R
Y

L
E
V

E
L

G
E
N

E
R

A
L

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

FEMALE

FEMALEMALE

GENDER

GENDER

ANIMAL

MALE

GENDER GENDER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 A sense framework for logical objects 121

its solution. (We will re-engineer a very different view of this pattern when we look at the
object paradigm in Chapter 8.)

Figure 6.12:
Logical class
‘dynamic classifi-
cation’

Again, through the use of attributes, the substance paradigm can mimic a constrained
version of dynamic classification. A primary substance cannot change its secondary
substance, but its primary attributes can change the secondary attributes they belong
to. We can illustrate how this works with Porky’s sex change. As shown in Figure 6.13,
Porky’s primary gender attribute changes its secondary gender attribute. It starts off
belonging to the secondary male gender attribute and ends up belonging to the second-
ary female gender attribute. The range within which an attribute can change is
restricted. For example, a male gender attribute cannot change into a red colour
attribute.

Figure 6.13:
Dynamic second-
ary attributes

The way attributes mimic logical multiple and dynamic classification can be used to
translate an object model onto an entity-oriented database. This is a useful feature
because it means that, with some manipulation, an O-O business model can be fully
implemented on a traditional entity database—although this gives the database an unu-
sual structure.

BEFORE AFTER

TIME

BOARS BOARSSOWS SOWS

PIGS PIGS

BEFORE AFTER

TIME

PIG PIG

P
R

IM
A

R
Y

L
E
V

E
L

G
E
N

E
R

A
L

S
U

B
S
T
A

N
C

E
-A

T
T

R
IB

U
T

E
H

IE
R

A
R

C
H

Y

FEMALE FEMALE

MALE MALE
GENDER GENDER

ANIMAL ANIMAL

MALEFEMALE

GENDERGENDER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
122 Chapter 6 The Logical Paradigm’s Framework

I normally make use of this feature to build a validation system for the business model
on an easy-to-use PC-based entity-oriented database (such as Microsoft’s ACCESS).
This means I can test the conceptual correctness of the model before it is translated into
the system specification. I find that it saves a lot of time and effort if conceptual errors
are found and fixed during business modelling. Without the validation system, they
would be embedded into the system specification and only unearthed during accept-
ance testing.

2.3 The sense framework

Our look at the logical paradigm’s sense framework should have convinced us that it is
superior to the substance paradigm. There are the structural enhancements:

• The super–sub-class pattern can support a lattice hierarchy; it is no longer
constrained to ‘single inheritance’.

• The class–member pattern can support multiple and dynamic classification;
it is no longer constrained to single and static classification.

These benefits proceed from a superior semantics, one based on extension and strong
reference. The shapes of these patterns come from a more accurate understanding of
the connections between tangible objects in the real world. This accuracy is not bought
at the expense of complexity, quite the opposite in fact. The logical paradigm’s frame-
work is simpler than the substance paradigm’s. And most of the framework that we have
examined here, in particular the notions of class and tuple, is re-used by the object par-
adigm.

3 An environment that encourages compacting

The object paradigm provides a friendly environment for generalising patterns and so
compacting the model. We can see the beginnings of this here in the logical paradigm.
The removal of simple structural constraints, such as single classification, has encour-
aged generalisation and so increased the potential for compacting.

It is easy to dismiss the increased flexibility and sophistication of the structure of the log-
ical paradigm as only marginally useful to modelling. This is only true if the new seman-
tics is not understood and so the potential of the changes not exploited. When people
understand the semantics (when they master the new way of seeing), they start using
its enormous potential. We now look at a simple example that illustrates one part of this
enormous potential. We see how the change from single classification to multiple classi-
fication offers the potential for literally astronomic increases in conceptual economy,
packing more information into a smaller space.

3.1 Example of the increased potential for conceptual economy

Consider Porky a boar, a member of the class boars, shown in Figure 6.14. What is a
boar? If we look it up in a dictionary, one definition (the one we are using here) is a male
pig. If we interpret this in class terms, we are saying that the class boars is the intersec-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 An environment that encourages compacting 123

tion of the class pigs and the class male animals. In other words, as shown in Figure
6.14, members of the class boars are just those members of the class pigs that are also
members of the class male animals.

Figure 6.14:
Porky the Boar

Now that we have defined the class boars with its two super-classes, it is clearly super-
fluous. We could eliminate it from the final system without losing any functionality. The
boars class would no longer exist and Porky would be directly a member of the pigs and
male animals classes (see Figure 6.15). (However, we would typically keep a record of
the generalisation, and so the redundant boars class. This would be used to help peo-
ple understand the generalised model.)

Figure 6.15:
Generalised male
pigs

We can see this gives us a multiple classification structure when the classes are drawn
in a hierarchy, as in Figure 6.16. This type of structure is not available in the substance
paradigm, and so definitely not available to entity-oriented business modellers. It only
becomes available with the logical paradigm.

This is a very tangible example of conceptual economy. We have eliminated a class
with no loss of information. It is also an example of generalisation using super-classes,
because the two super-classes, pigs and male animals, make the lower level class,
boars, superfluous, enabling us to eliminate it from the system.

PORKY

ANIMALS

MALE
ANIMALS

BOARS

PIGS

PORKY

ANIMALS

MALE
ANIMALS

PIGS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
124 Chapter 6 The Logical Paradigm’s Framework

Figure 6.16:
Shift to multiple
classification

Figure 6.17: T
Expanded frame-
work of classes

his generalisation has led to the elimination of one class (boars). It also involves the
construction of two new classes (pigs and male animals). So overall, this is hardly con-
ceptual economy. This kind of generalisation only begins to deliver conceptual economy
when there are more than a few objects in the system. If we expand the scope of the
example to include sows, rams, ewes, stallions and mares, we get something like Fig-
ure 6.17.

Figure 6.18:
The generalised
classes

IN
D

IV
ID

U
A

L
L
E
V

E
L

S
U

P
E
R

-S
U

B
-C

L
A

S
S

H
IE

R
A

R
C

H
Y

PIGSPIGS
MALE

ANIMALS
MALE

ANIMALS

PORKY

ANIMALSANIMALS

PORKY

BOARS

ANIMALS

BOARS SOWS

RAMS EWES

STALLIONS MARES

ANIMALS

PIGS

SHEEP

MALE
ANIMALS

HORSES

FEMALE
ANIMALS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 An environment that encourages compacting 125

We now generalise these classes and construct five super-classes: pigs, sheep,
horses, male animals, and female animals. We can now eliminate all the six original
classes—such as stallion (male horse) and sow (female pig)—leaving the five super-
classes. Figure 6.18 shows the result. This is a similar structure to our original general-
isation (shown in Figures 6.15 and 6.16), the only change is the addition of the extra
classes. This shows that the pattern in the original generalisation is fertile. It is applica-
ble across a range of classes, something the lower level classes are not. We have
found a re-usable pattern.

Things are also looking up from a conceptual economy viewpoint. We started with six
classes and ended up with five more general classes—one class less. We have made a
saving, but not on a grand scale. For this to happen, we need to increase the number of
classes we start with.

3.2 Measuring multiple classification’s potential for generalisation

If we want to measure the potential for generalisation that multiple classification offers,
we take a different tack. In a generalisation, we construct a new top level of super-
classes that renders all the lower levels superfluous. Their information is compressed
and compacted into the more general super-classes (shown in
Figure 6.19).

Figure 6.19:
The stages of gen-
eralisation

To measure multiple classification’s potential for generalisation, we start at the final
stage with the generalised classes and ask how many lower level classes they could
have generalised. If we assume that the final classes are totally generalised, then work-
ing out the maximum potential number of lower level classes that can be constructed
from them is a relatively simple mathematical calculation. The results are shown in
Table 6.1.

t is important to remember that the potential number of lower level classes is only a
measure of multiple classification’s theoretical power of generalisation—the actual
number is likely to be much less. However, the table gives us a feel for the actual power.
As we can see, the potential increases substantially as the number of general classes
gets higher. This is because the number of possible intersections gets shown in larger,
so the potential number of lower level classes that can be superseded grows exponen-
tially.

IWe can use these figures to give us an indication of how multiple classification’s poten-
tial for generalisation affects increases in scope and functionality. Assume that we dou-
ble the number of objects in a totally generalised system. If we take the potential
number of lower level classes as an indication of the scope and functionality of the sys-
tem classes, then this doubling of size much more than doubles the scope and function-

ORIGINAL
CLASSES

CONSTRUCT
SUPER-CLASSES

ELMINATE
ORIGINAL CLASSES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
126 Chapter 6 The Logical Paradigm’s Framework

ality. For instance, when we double a system with 10 objects, we should have a
theoretical 1000 fold (1048550/1013) increase in scope and functionality. This is an
increase of three orders of magnitude. If we had started with a larger system, the
increase would be even higher. Doubling from 100 to 200 objects gives a theoretical 30
orders of magnitude increase.

These figures obviously only indicate a theoretical potential; practically, they are not
going to be reached. But even if substantially lower levels are reached, this still repre-
sents a significant increase in conceptual economy. As we discussed in the Prologue,
our experience with increasing the scope of business models is of significant increases
in conceptual economy (shown in Figure P.5). We also discussed how increasing the
scope of a traditional system building project does not work in the same way. This is, in
part, because it does not have access to the resources of multiple classification.

It seems difficult to understand why something that obviously makes common sense,
such as generalisation, has not become a central feature of business modelling before.
If getting a significant improvement in conceptual economy were easy, it would have
been done long ago. There has to be a catch. These suspicions are well founded; there
is a catch. It is that we can find it difficult to see the general patterns for the high-level
classes that will supersede the original lower level classes.

I have found that the secret to seeing these high-level general classes lies in the object
paradigm. This gives us a much better, much more conceptually accurate, understand-
ing of what objects are, which unearths really powerful re-usable patterns. These natu-
rally form the basis for very general classes. Without the paradigm, we cannot really
exploit class’s potential for compacting through generalisation properly. In the worked
examples in Part Six, we see how this works; how using the object paradigm helps us to
see the right general pattern and how this leads to compacting.

Number of general classes Potential number of lower level classes

1 0

2 1

3 4

4 11

5 26

10 101

20 10485

100 1.27 x 1030

200 1.61 x 1060

N 2N-N-1

Table 6.1: Theoretical power of generalisation

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The problem with logical changes 127

3.3 Strong sense of object

The preceding examples illustrate how the logical paradigm provides a relatively unre-
stricted environment for generalising and compacting patterns. One important reason
for this is its strong sense of object. This means that everything in the paradigm is a log-
ical object. We can this in its two new tools for capturing patterns, classes and tuples.

Classes describe collections of objects with similar patterns. Tuples, and their tuples
classes, describe the connections between objects that make up the patterns. Both
these tools have two important structural properties:
1. They can apply to any object. In other words, there is no universal structural restric-

tion on an object belonging to a class or being a place in a couple.
2. The constructed classes and tuples (and their tuples classes) are objects. This is

important because the tools cannot be applied to themselves or each other unless
they are objects. In other words, class objects can be members of class and places
in tuples, and so on.

These structural properties are of practical importance. Classes and tuples, just like
individual objects, have patterns. If the pattern capturing tools could not be applied to
them, then these patterns could not be described and the resulting model would then be
less complete.

4 The problem with logical changes

We now look at how the logical paradigm deals with the last of the four key types of
things we identified in Chapter 3—changes happening to things. While the logical para-
digm provides a good semantic framework for the first three types of things, it has prob-
lems with this fourth one.

4.1 Logical bodies persisting through change

As we noted in Chapter 5, substance plays two roles. It is the home for attributes and
also the means for bodies to preserve their identity over time. The logical paradigm
deals with the first role—attributes are replaced with classes of tangible extensions.
However, there is still the problem of explaining bodies’ identity through change.

The problem, which the English thinker David Hume so precisely describes (but doesn’t
resolve) in his A Treatise of Human Nature, still exists for the logical paradigm. He sets
out the objective:

Our chief business, then, must be to prove, that all objects, to which we ascribe identity,
without observing their invariableness and uninteruptedness, are such as consist of a suc-
cession of related objects.

And then uses a series of thought experiments to show that it is impossible to achieve:

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
128 Chapter 6 The Logical Paradigm’s Framework

. . . suppose any mass of matter, of which the parts are contiguous and connected, to be
plac’d before us; ‘tis plain we must attribute a perfect identity to this mass, provided all
the parts continue uninterruptedly and invariably the same, whatever motion or change of
place we may observe either in the whole or in any of the parts. But suppose some very
small or inconsiderable part to be added to the mass or subtracted from it; tho’ this abso-
lutely destroys the identity of the whole, strictly speaking; yet as we seldom think so
accurately, we scruple not to pronounce a mass of matter the same, where we find so triv-
ial an alteration. . . .

There is a very remarkable circumstance, that attends this experiment; which is that tho’
the change of any considerable part in a mass of matter destroys the identity of the whole,
yet we must measure the greatness of the part, not absolutely but by its proportion to the
whole. The addition of diminution of a mountain wou’d not be sufficient to produce a
diversity in a planet; tho’ the change of a few inches wou’d be able to destroy the identity
of some bodies. . . .

This may be confirm’d by another phenomenon. A change in any considerable part of a
body destroys its identity; but ‘tis remarkable, that where the change is produc’d gradu-
ally and insensibly we are less apt to ascribe to it the same effect. . . .

But whatever precaution we may use in introducing the changes gradually, and making
them proportionable to the whole, ‘tis certain, that where the changes are at last observ’d
to become considerable, we make a scruple of ascribing identity to such different objects.
There is, however, another artifice, by which we may induce the imagination to advance a
step farther; and that is . . . some common end or purpose. A, ship of which a considerable
part has been chang’d by frequent reparations, is still considered as the same; nor does the
difference of materials hinder us from ascribing an identity to it. . . .

But this is still more remarkable, when we add a sympathy of parts to their common end, .
. . This is the case with all animals and vegetables; . . . The effect of so strong a relation is
. . . that in a very few years both vegetables and animals endure a total change, yet we still
attribute identity to them, while their form, size and substance are entirely altered. An
oak, that grows from a small plant to a large tree, is still the same oak; tho’ there be not
one particle of matter . . . the same. An infant becomes a man, and is sometimes fat,
sometimes lean, without any change in his identity.

These puzzles over what makes something the same have a long history. In Chapter 4,
we looked at how the substance paradigm explained sameness over time with the mys-
terious notion of substance (see Figure 4.6). In the last chapter, we saw how the logical
paradigm has replaced mysterious substance with the more physical notion of exten-
sion. However it cannot solve the problems of identity persisting through time. Our
notions of sameness and identity need to evolve into something more sophisticated
before we can see a solution. We have to wait for the next stage of evolution, the object
paradigm, for this to happen.

4.1.1 The whole–part pattern persisting through time

This problem with identity spills over to the whole–part pattern (the study of which is
known as mereology). This was and is an important pattern. It was analysed by Aristotle
and plays an important part in current O-O analysis and design, along with the class–

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The problem with logical changes 129

member pattern. Interestingly, in Frege’s time what we call classes and wholes were
both called classes: one a collective class, the other a distributive class. And both types
of classes were studied by mathematicians—mereologic was a part of logic. Nowadays
mathematicians tend to only be interested in the class–member pattern.

The logical paradigm’s notion of extension may seem, at first sight, to offer a semantic
explanation of wholes and parts. After all, is a part not something whose extension is
contained in the extension of the whole? This works for a point in time, but—like identity,
and for the same reason—does not work over time. My hand, now, is part of my arm,
now. But is my hand, now, a part of my arm tomorrow? Is being a part tied into a
moment of time?

For hands and arms this is not much of a problem, but the issue goes deeper when we
move from parts in space into parts over time. We talk about the morning being part of
the day, of our childhood being part of our life. These whole–part patterns do not fit into
the logical paradigm’s extension-based explanation. We need to wait for the object par-
adigm’s more sophisticated notions of extension and sameness to resolve these difficult
puzzles.

4.2 Logical changes

The notions of bodies and changes are intimately connected. The problem of identity as
bodies persist through time has another side. This is working out what the changes that
happen to the body are. In the substance paradigm, they were not a thing, but what
happened to accidental attributes. The logical paradigm’s replacement for changing
attributes is dynamic classification. This is the same as we discussed earlier where an
object shifts from one class to another (shown in Figure 6.12).

Figure 6.20:
Dynamically clas-
sifying extensions

It would have been ideal if the logical paradigm could have found a way to make
dynamic classifications objects. Then, they could have participated in object’s useful
patterns; for instance, we could have had classes and tuples of dynamic classification
objects. The problem is that if dynamic classifications are objects, they have to have

TIME

BEFORE AFTER

RED
THINGS

GREEN
THINGS

RED
THINGS

GREEN
THINGS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
130 Chapter 6 The Logical Paradigm’s Framework

extensions, and it is unclear what the extension could be. This thought experiment illus-
trates the problem.

Assume that there is a tomato on the table. It is currently green, so a member of the
class, green things. Assume it instantaneously turns red, so becoming a member of the
class, red things. In logical-speak, it is dynamically re-classified. What is happening
from an extension viewpoint? As extensions exist at instants, we could say that at every
instant up to a certain point, the instantaneous extension belonged to the class green
things. And then at every instant after that point, the instantaneous extension belonged
to the class red things. This is an acceptable explanation, but, like the substance para-
digm, it puts the dynamic classification on a different dimension. Dynamic classification
happens to objects, it is not an object (illustrated in Figure 6.20).

If we were keen to make the change an object, to say it is the instantaneous extension
of the tomato when it changes colour would be a strong temptation. We can use the log-
ical paradigm’s version of Zeno of Elea’s paradox to show this leads to contradictions.
We looked at the substance paradigm’s version in the discussions of Aristotle’s notion
of change in Chapter 4. There, we used the paradox to show that motion—a type of
change—could not be an attribute. Here, we use it to show that dynamic classifications
cannot be extensions and so cannot be objects.

If the tomato’s change is an instantaneous extension, then as the tomato is coloured, it
must have a colour at that instant. This cannot be red or green, otherwise it would not
be changing. So it must be some other colour. Even if we assume it has a colour, the
problem re-surfaces. Let’s assume it is blue; in other words, its instantaneous extension
belongs to the class blue. We are back where we started, only with two dynamic classi-
fications—one from red to blue and another from blue to green. However many instants
we select, the same problem occurs. Dynamic classifications cannot be consistently
translated into extensions and so objects.

There are no practical, operational problems with using dynamic classifications in busi-
ness modelling. What is at issue is a missed opportunity. From a semantic viewpoint,
dynamic classifications are inadequate and this compromises the conceptual power of
the business model. We can see the semantic inadequacy of dynamic classifications
from the way they breach the strong reference principle. They are not objects, they do
not have an extension, so we cannot refer to them directly. The connection between the
concept and object is mysterious, because the object is mysterious.

5 The four key types of things

We can see how far the logical paradigm has taken us from the substance paradigm by
looking at the four key types of things we identified in Chapter 3:

• particular things,
• general types of things,
• relationships between things, and
• changes happening to things.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 A new, conceptually more accurate, logical way of seeing things 131

In the substance paradigm, a thing was particular if it had primary substance and gen-
eral if it had secondary substance. My car is particular because it has primary sub-
stance and car is general because it has secondary substance. In the logical paradigm,
a thing is particular because it is an individual extension and general if it is a class of
extensions. My car is particular because it is an individual extension and the cars class
is general because it is a collection of extensions. The notion of primary substance has
been replaced by the notion of extension, and the notion of generality by that of class.

In the substance paradigm particularity and generality applied to attributes as well as
substance. From the logical paradigm perspective, the attributes divide into two types,
non-relational and relational. Non-relational attributes, both particular and general,
become classes. For example, my car’s particular redness and redness in general
become the class of red things.

Relational attributes take us onto the third key type of thing—relationships between
things. The substance paradigm’s relational attributes are re-engineered into something
quite different—a tuple and a class. My car’s ownership relational attribute becomes the
couple <my car, me> and the owned by tuples class.

For the first three types of things, the logical paradigm has made a substantial change
to (and a substantial improvement upon) the substance paradigm. However in the fourth
type of thing—changes happening to things—it does not contribute much. In fact, as the
Section 4, "The problem with logical changes"’ shows, the shift from substance to
extension means that the advantage an unchanging substance has in explaining how
objects persist through time has been lost.

Furthermore, neither the substance nor the logical paradigm offers an explicit descrip-
tion of what changes are. This problem with changes, along with the problem of what it
means for bodies as extension to persist through change, is resolved by the object par-
adigm’s semantics, which we look at in Part Four.

6 A new, conceptually more accurate, logical way of seeing things

Working within the logical paradigm’s new semantics involves a new, conceptually more
accurate, way of seeing things. In Chapter 4 we discussed how the development of
paper and ink technology led to a more accurate notion of signs. There is a similar
development here.

6.1 A new, conceptually more accurate, whole–part pattern

For instance, the logical paradigm has developed a more accurate distinction between a
whole–part and a class–member tuple than we are used to. Currently most of us would
regard the expressions ‘part of a group’ and ‘a member of a group’ as interchangeable.
In our ordinary everyday language there is no real distinction between:

John is part of the technical services group, and
John is a member of the technical services group.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
132 Chapter 6 The Logical Paradigm’s Framework

However within the more accurate logical paradigm there is a distinction—being a part
and being a member are quite different. So which of the two is the person’s connection
with the group? We can work this out logically because:

If A is a part of B, and
B is a part of C, then
A is also a part of C

Consider a person’s hand, it is undoubtedly part of the person. Therefore, if the person
is part of the group, his or her hand would also be part of the group. In logical format:

If a person’s hand is a part of a person B, and
A person is a part of a group, then
The person’s hand is also a part of the group.

However, the person’s hand is clearly not part of the group, so the person’s connection
to the group cannot be whole–part. But it can be class–member, as this logical format
shows:

If a person’s hand is a part of a person, and
A person is a member of a group, then
The person’s hand is not normally a member of the group.

This implies that the group is a class and not a whole.

We saw (in Chapter 4) why the Huichol Indians thought corn was the same as deer.
They did not have as accurate an idea of signs and sameness as us (the shift to more
accurate distinctions was illustrated in Figure 4.19. Similarly, some people quite happily
talk and think of people as part of groups in the ‘same’ way as they think of their finger
as part of their hand. They have not yet acquired the logical paradigm’s more accurate
way of seeing whole–part patterns. This shift is illustrated in Figure 6.21.

Figure 6.21:
Shifting to more
accurate logical
distinctions

6.2 Other new, conceptually more accurate, patterns

The logical paradigm also leads to other new distinctions. In ordinary everyday lan-
guage it is easy to confuse a sub-class tuple with a class–member tuple. For example,
we do not normally say ‘Rover is a member of the class dogs’ and ‘dogs is a sub-class
of mammals’. Instead we say ‘Rover is a dog’ and ‘a dog is a mammal’ using the same
connecting ‘is a’ phrase. This makes the two easy to confuse. Since the logical para-
digm explained what the two are, logicians have been clear on the difference. However
before the logical paradigm, even logicians had problems. For example, even the 17th

SIMPLE PRE-LOGICAL CATEGORY MORE ACCURATE LOGICAL DISTINCTIONS

MY FINGER
IS PART OF
MY HAND

PERSON
IS A MEMBER OF

THE GROUP

MY FINGER
IS PART OF
MY HAND

PERSON
IS A MEMBER OF

THE GROUP

WHOLE-MEMBER WHOLE-PART CLASS-MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Summary 133

century thinker Gottfried Leibnitz, who has been called one of the all time great logi-
cians, was confused about the difference at times.

The logical paradigm is much newer than the earlier paradigms; it is barely a hundred
years old. This is an issue, because it can take centuries for a new way of seeing to be
absorbed into a culture and become a standard part of the way people see things. It
means that the logical paradigm has not really had time to sink in. This is particularly
true with its notions of a class of classes and a tuples class. However, the slow overall
progress of assimilation of class patterns is perhaps surprising given that most school-
children are taught them in mathematics lessons.

Most people find classes of classes an unnatural idea. The colours and car types exam-
ples in this chapter may seem logically correct but do not feel natural. When people
start business object modelling they tend to find it difficult to spot a class of classes,
even when it is staring them in the face.

The notion of a relational attribute is more insidious. We probably feel more comfortable
with the idea of a connection as a separate tuple object, rather than an embedded rela-
tional attribute. For example, we are happy to see my ownership of my car as a sepa-
rate object from both me or my car. However we tend to see each of these connected
objects as having its own identity. We can demonstrate this with the example illustrated
in Figure 5.16. Most people naturally assume that the sentences ‘Prince Charles is the
father of Prince William’ and the ‘Prince Charles is taller than Prince William’ refer to dif-
ferent connections. They do not naturally assume that both sentences refer to the same
connection (a couple) that is a member of two tuples classes: father of and taller than.
To them, the logical paradigm’s more accurate way of seeing is counterintuitive.

All these new ways of seeing are inherited by the object paradigm. If we want to busi-
ness object model, then we need to master them—this involves not just understanding
the principles but actually seeing in the new way. This takes practice. The worked
examples in Part Six are a good starting point, but for most people it will take some time
before the new way of seeing is embedded so firmly that it becomes instinctive.

7 Summary

The logical paradigm provides us with a semantic replacement for the substance para-
digm (or at least a replacement for the first three of the four key types of things).
Because it is based on tangible extension, it is immune to the criticisms of mysterious
unknowable substance.

The backbone of the paradigm is the strong reference principle that asserts that con-
cepts can only refer to objects with extension. This was a guiding light in the re-engi-
neering of the substance paradigm, which transformed the substance paradigm’s
particles into the simpler and more general particles of the logical paradigm, the class
and the tuple.

The re-engineering not only simplified the particles, it made them more general and so
more powerful. The new particles can handle multiple ‘inheritance’, multiple classifica-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
134 Chapter 6 The Logical Paradigm’s Framework

tion and dynamic classification. This enables a new logical environment that is much
more generalisation-friendly than the substance or entity paradigms.

This shift to the logical paradigm takes us halfway along the evolution to object seman-
tics. It has prepared the ground the shift to the object paradigm, which we now make in
Part Four.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part Four
Shifting to the Object Paradigm

Chapter 7 Physical Bodies as Four-Dimensional
Objects

Chapter 8 Shifting to the Object Paradigm

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 7
Physical Bodies as Four-Dimensional

Objects

1 Introduction

2 The logical semantics for physical bodies

3 The shift to object semantics

4 Physical stuff objects

5 Classes of four-dimensional objects

6 Tuples of four-dimensional objects

7 A new way of seeing bodies—a key type of thing

8 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
138 Chapter 7 Physical Bodies as Four-Dimensional Objects

1 Introduction
To people familiar with object-oriented programming, it might appear that logical seman-
tics has all that object-orientation needs. At an operational level they are right, but at an
understanding level—the level of business modelling—they are missing something. As
we saw in the final sections of the previous chapter, the logical paradigm’s semantics
are shaky for the last of the four key types of things—changes. The shift to the object
paradigm is driven by the need to give change a firm semantics.

So in Part Four, we focus on the object paradigm’s semantics for change. We do this in
two parts. In this chapter, we deal with the semantics of physical bodies, persisting
through changes. In the following chapter, we consider the semantics of the changes
themselves

We start this chapter with a series of thought experiments that clarify the logical seman-
tics for physical bodies, persisting through changes and the issues it raises. We then
explore the shift to object semantics for physical bodies and see how it resolves the
issues raised by logical semantics.

Then, we look at an example of how the new object semantics for physical bodies can
transform our current notions. We see how our notion of ‘stuff’ is re-engineered into the
semantically richer notion of stuffs as physical bodies.

Finally, we re-engineer the logical notions of class and tuple objects constructed from
physical bodies.

2 The logical semantics for physical bodies

The evolution from logical semantics to object semantics involves a pure shift in our
understanding of what objects, whether bodies or changes, are. In Chapter 1, we used
an ambiguous picture as an analogy for how paradigm shifts work. This is useful for
explaining what happens in the shift to object semantics. In Figure 7.1 (based upon
Figure 1.2), when we shift from seeing two faces to seeing a vase, nothing in the under-
lying picture changes. In the same way, the shift to object semantics does not involve
any new facts, just a new way of seeing the old facts.

Figure 7.1:
Shifting views

FACE

BROW

NOSE
LIPS

CHIN

VASE
STEM

LIP

BASE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The logical semantics for physical bodies 139

This new way of seeing resolves a central problem for physical bodies, explaining how
identity persists through change. We have illustrated this problem before with a lepidop-
ter. Over time it goes through various stages. We need to be able to explain why and
how these different stages are, in some sense, the same object; even though, for
instance, the butterfly stage of the lepidopter is so obviously different from its caterpillar
stage. We saw in Chapter 4 how Aristotle’s substance paradigm gave a consistent
explanation (illustrated in Figures 4.5 and 4.6), but one based on the now discredited
notion of substance. In Chapter 6, we saw that logical semantics cannot give an expla-
nation; that something can both be the same and different at different times is a myste-
rious fact.

Before we make the shift away from logical semantics, we give ourselves a context by
examining our current intuitions about physical bodies’ identity over time. We do this in
three thought experiments:

• The wrecked car,
• The car-minus, and
• The chairman experiments.

These reveal how we determine whether physical bodies are the same at different times
and how ‘two’ physical bodies can be the same at one time and different at another
time. We gain further insight by examining how the substance paradigm deals with
these thought experiments.

2.1 Wrecked car thought experiment

We instinctively use a key criterion to decide whether an object is the same at different
times—this is whether it has persisted continuously through time. In everyday life, we
often make the decision on the basis of how the physical body looks and feels. This first
thought experiment is designed to show how seriously we take the criterion of continuity
and that the look and feel of a physical body are only practical stand-ins.

Assume I buy a brand new car. Using an advanced science fiction device, supplied to
me for this experiment, I make a record of the type and position of every atom in the car.
I then lend my car to a friend for a week.

At the end of the week, he brings me two cars. They are the same make and model, but
one is brand new and the other is a smashed up wreck. He says that one of the cars is
mine and asks me which one. The smashed up car does not look at all like my original
new car; everything is either bent, torn or scraped. But the other car does. I double
check by using the science fiction device to get a picture of its atomic structure, which I
compare with the record I made at the beginning of the week. They match perfectly.
With this evidence, it would only be natural for me to assume this is the car I bought at
the beginning of the week.

Now my friend introduces me to a camera crew who have been filming my car over the
last week. They show me their film. It starts at the beginning of the week and follows,
without a break, everything that happens to the car and ends up with my friend bringing
the two cars in to me. In the film, I see my car going through a number of accidents until
it is the smashed up wreck that is before me now. Now I realise that the smashed up car

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
140 Chapter 7 Physical Bodies as Four-Dimensional Objects

is, in fact, mine. Now I am not, and you wouldn’t be, tempted to say that the new car is
mine.

Why is this? It is because there is a continuous link between the car at the two times.
This takes precedence over any evidence about how the car looks and feels. Continuity
is the key criterion. It is the ultimate basis for our judgements on whether things are the
same at different times. But it does not explain why they are the same.

2.2 Car-minus thought experiment

At any one time, two objects must either be the same or different. In this thought exper-
iment, we see that the same is not true over time. Sameness can change over time; two
objects can be different at one time and then the same at a later time.

Assume, again, that I bought a new car last week. An object is an extension, so I can
construct an object by specifying an extension. Assume that I did this when I bought my
car; assume I chose an extension, consisting of the car minus its back seats—and
called it car-minus. Car-minus is obviously different from my car; they have different
extensions. Car and car-minus are also both physical bodies that persist through time.

Now, assume that today I take the back seats out of my car and destroy them. Then, my
car has changed; it is now without any back seats. But car-minus has not changed; the
back seats were never part of it. It would appear that car and car-minus now have
exactly the same extension; my car minus its back seats.

Under logical semantics, this means they must be the same object. Because physical
bodies are instantaneous extensions, at a particular time, one can determine whether
they are the same or different by seeing whether they occupy the same extension. We
cannot meaningfully ask this question in the same way about physical bodies at differ-
ent times. Because they change position, shape and size, their extension is not a relia-
ble guide.

2.3 Chairman thought experiment

The car-minus experiment is contrived. It was meant to be, so that we could see the sit-
uation clearly. Because it is academic, I’m sure some (probably most) of you are
tempted to dismiss it as irrelevant to anything commercial. But you should not. Any
physical body could end up in a similar situation. We can see this in the following
thought experiment that uses a modern version of an ancient puzzle; one that was
known well before Aristotle’s time. The puzzle was often expressed as a question—can
two things be in the same place at once?

Consider Mr. Jones, the Chairman of NatLand Bank. Under logical semantics, if the
concept ‘Chairman of NatLand Bank’ is legitimate it must refer to an object, similarly for
the concept ‘Mr. Jones’. In fact, we know they are both concepts and refer to the same
object.

Technically speaking, under logical semantics, objects are extension. And if what
appears to be two objects share the same extension (in other words, have the same

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The logical semantics for physical bodies 141

height, width and depth), they are really the same object. Two objects cannot have the
same extension at the same time. Because we know that the concepts ‘Chairman of
NatLand Bank’ and ‘Mr. Jones’ refer to the same extension, they must, by the logical
semantics’ definition, refer to the same object.

We now move on a week or two. Mr. Jones has resigned his chairmanship and Mr.
Smith has been appointed the new chairman. From logical semantics’ perspective, the
concept ‘Chairman of NatLand Bank’ now points to the same extension as the concept
‘Mr. Smith’ (shown in Figure 7.2). It is plain that the concept ‘Chairman of NatLand
Bank’ has changed its reference and now points to Mr. Smith. And this is not a special
situation with an obscure case; it occurs in every business with every position, from tea
boy up to managing director.

Figure 7.2:
Changing refer-
ence

Figure 7.3:
A lepidopter sub-
stance—caterpil-
lar and butterfly
attributes

2.4 Aristotle’s explanation of the experiments

These questions about how sameness over time works are ancient. In Chapter 4, we
saw how Aristotle developed his notion of substance in a way that, as far as he was

M
O

D
E
L

D
O

M
A

IN

Mr Smith Mr SmithMr Jones Mr Jones

TIME

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

Chairman of
Natland Bank

Chairman of
Natland Bank

BEFORE AFTER

TIME

LEPIDOPTER
#1

LEPIDOPTER
#1

CATERPILLAR BUTTERFLY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
142 Chapter 7 Physical Bodies as Four-Dimensional Objects

concerned, gave a clear explanation. We illustrated this with the example of the stages
in a lepidopter’s life. In the substance paradigm, the caterpillar and butterfly stages of
the lepidopter were the same because they had the same substance. The reason they
looked and felt so different is that they had different attributes (shown in Figure 7.3). For
Aristotle, one of substance’s main purposes was to explain sameness over time. When
logical semantics replaced the notion of primary substance, it could no longer use Aris-
totle’s explanation.

Faced with the three thought experiments, Aristotle could use substance to give clear
answers. In the wrecked car experiment, he would say that the two cars were the same
because, like the lepidopter, they had the same substance.

In the car-minus thought experiment, Aristotle would say that my car and car-minus (if
he accepted that car-minus existed) are different substances. He would explain what
happened when I took the back seats out of my car as two substances starting to share
the same place (shown in Figure 7.4) where place is the Aristotelian equivalent of
extension.

Figure 7.4:
My car and car-
minus sharing a
place attribute

Aristotle would have offered a similar explanation to the Chairman of NatLand Bank
thought experiment. He would have suggested that there is a third substance, the
Chairman of NatLand Bank, in addition to the Mr. Jones and Mr. Smith substances. This
shares a place attribute with the other two substances at different times (shown in Fig-
ure 7.5).

Figure 7.5:
Chairmen sharing
place predicates

BEFORE AFTER

TIME

CAR-MINUSMY CAR CAR-MINUSMY CAR

PLACE

#1 #2 #2

PLACE PLACE

CHAIRMANMR JONES MR JONES

MR SMITH

BEFORE AFTER

TIME

CHAIRMANMR SMITH

PLACE

#2 - ACME BOARDROOM

PLACEPLACE

PLACE

#1 - JONES HOME

#2 - ACME BOARDROOM#1 - SMITH HOME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The shift to object semantics 143

3 The shift to object semantics

Aristotle’s explanations of the three thought experiments show the benefits, when cap-
turing change patterns, of having place (his version of extension) as an attribute cate-
gory rather than a foundation for physical bodies. However, we should not be tempted
to retreat back to substance. Object semantics’ shift to a new particle for physical bod-
ies provides us with a much better tool for capturing these change patterns.

3.1 The origins of object semantics

We start the re-engineering by looking at its origins in a new way of seeing developed in
physics. The role model for this way of seeing was Albert Einstein’s amalgamation of
space and time to space-time in his theory of relativity. This is not normally applied in
everyday life, to ordinary people-sized objects. However, a number of people (including
one of today’s leading philosophers, Willard Van Orman Quine) saw how Einstein’s
notion of space-time can be used to resolve the problems of identity of people-sized
physical bodies. As Quine says:

Our ordinary language shows a tiresome bias in its treatment of time.

This ‘tiresome bias’ is treating time as something completely separate from space. His
answer is to follow Einstein and treat time as another dimension on a par with space’s
three. One of the benefits of this shift was that the patterns for space and time were
amalgamated into general patterns for space-time. As we shall see, this proved particu-
larly fruitful for whole–part patterns. The key shift we focus on here is in the central
notion of extension; from space-based and three-dimensional to space-time based and
four-dimensional.

3.2 Explaining our intuitions

This shift takes some getting used to. However, once we do, it seems natural; it appears
to be an explicit explanation of what we have already grasped intuitively. It certainly fits
in neatly with many of our intuitions. For instance, it not only respects our intuition that
continuity is a key factor in identity, but explains why by giving continuity a physical
embodiment.

3.2.1 A four-dimensional lepidopter

We can see how this works with an example. In logical semantics, individual physical
bodies are extensions and extension is three-dimensional; height, width and depth. A
lepidopter in a caterpillar state is a physical body with a three-dimensional extension.
Similarly when a caterpillar metamorphoses into a butterfly, it is also an object and so is
also a three-dimensional extension, but a different one. What makes these two exten-
sions the same object is that there is a continuous link of time-stages between the cat-
erpillar and the butterfly.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
144 Chapter 7 Physical Bodies as Four-Dimensional Objects

The new object semantics follows Quine and Einstein’s lead and assumes extension is
four dimensional: space’s three dimensions and the time dimension. In it, the lepidopter
is one four-dimensional object. The two, three-dimensional objects from logical seman-
tics are now just slices in time of the new four-dimensional object as illustrated in Figure
7.6.

Figure 7.6:
A four-dimensional
lepidopter

In this four-dimensional way of looking at things, continuity across time is now the same
as continuity across space. We can look up and down a lepidopter in space or backward
and forward in time along it. The continuity in time that we merely intuitively grasped
before is now transformed into something as physical and tangible as continuity across
space.

3.2.2 The general trend away from egocentricity

We can see this shift to space-time is part of a general trend—a trend from an egocen-
tric to a more ‘objective’ view of the universe. When children are young, they see the
world revolving around themselves. As they grow up, they begin to realise it does not. In
some ways, adults still retain an element of that egocentric attitude. For instance, most
of us half believe in a variation of Murphy’s law—that things happen when they are most
inconvenient for us. So, we half suspect that it is raining because we forgot our umbrella
or because we were going out to play tennis. Whereas, ‘objectively’ we know that the
weather is not influenced by our future plans.

We can see a similar egocentric attitude in the earth-centred theory of early astronomy.
This assumed that because people see the earth standing still and things moving in the
skies, the earth must be standing still and the planets and stars moving. When, in the
15th century, Copernicus suggested the earth was just another planet moving around
the sun, he was suggesting a less egocentric view of the cosmos. One in which humans
lost their special position at the centre of the universe.

Copernicus’ theory overturned an egocentric view of space. Quine and Albert Einstein’s
theories take this one step further and overthrow an egocentric view of time. We
assume that, because we are at a particular point in time, our position must be special.
This is egocentric. Why should the point in time that we inhabit (called the present) have
a special quality? Most people do not think, when walking down a path, that that point
on the path is special because they are there. The present is much like any other point
in time. In fact, all points in time have been, or will be, at some time the present.

Caterpillar
Time Slice

Butterfly
Time Slice

FOUR-DIMENSIONAL
LEPIDOPTER

OBJECT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The shift to object semantics 145

We tend to think of space and time as different because our experiences of them are so
different. But we are interested in the things in themselves, not how we experience
them. Just because something looks different, does not mean it is different. This is par-
ticularly clear when we can use two senses to ‘perceive’ the same type of object. When
we touch one banana and taste another we get very different feelings; but we have no
problems in recognising them as belonging to the same type of thing. We should think
about perceiving time and space in the same way; that we are perceiving the same type
of thing with different senses.

3.2.3 How business models have anticipated this shift

In one way, business modellers have already recognised the similarity of the space and
time dimensions. They intuitively and instinctively translate the time dimension into a
spatial dimension in their models.

We can see this by contrasting a business model with an engineer’s working model of a
steam engine. We expect the engineer’s model to have pistons that move up and down
when fuel is burnt in its combustion chamber. We judge the model by how accurately its
movements reflect the movements of a real steam engine. If it did not move, we would
say that it did not ‘work’.

What is interesting is that a business model does not ‘work’ in the same way. Unlike the
engineer’s model, it is not expected to reflect changes in the business by moving or
changing. Instead, it models one process following another in time as one process fol-
lowing another across a piece of paper. The changes in time are modelled by shapes in
space.

Business modellers compact the four spatio-temporal dimensions onto a two-dimen-
sional piece of paper; time is translated into space. This is analogous to the way an
architect describes the three spatial dimensions of a building on a two-dimensional
piece of paper—compacting three spatial dimensions into two.

There is an ancient precedent for this interchanging of time and space, one that we are
all familiar with—writing. Its characters use space to describe the way speech’s sounds
change over time. They use a spatial dimension to represent speech’s time dimension.

3.3 Re-interpreting the thought experiments

We now examine how object semantics resolves the problem of physical bodies’ iden-
tity over time by looking at the earlier thought experiments through four-dimensional
eyes. We need to be able to draw the four-dimensional objects that this reveals in some
way. We cannot draw four-dimensions. But if we use the business modeller’s technique
of compressing dimensions to fit four dimensions into two, then we can draw a diagram
called a space-time map. In it time, the most important dimension for us here, goes
across the page and the three dimensions of space are condensed into one that goes
up the page. (Figure 7.6’s four-dimensional lepidopter is an example.) Those people
familiar with state-transition diagrams can see this as, in some ways, a simple O-O ver-
sion.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
146 Chapter 7 Physical Bodies as Four-Dimensional Objects

3.3.1 Wrecked car thought experiment

We look at the wrecked car thought experiment first. When we did this experiment ear-
lier, we gave a reason for seeing the two time-stages as stages of the same thing. We
could trace a continuous link from the first time-stage to second. There was a continu-
ous link between my car in its original new state at the beginning of the week, through
all its mishaps during the week, to the battered wreck at the end of the week.

Figure 7.7:
Space-time map of
my new car

We now have a different way of interpreting this explanation based upon my car as a
four-dimensional space-time object. The time-stage that was a brand new car at the
beginning of the week is a part of the space-time object; the wreck at the end of the
week is another part. The two time-stages are now slices in time of the new spatio-tem-
poral physical body, as shown in Figure 7.7.

This explains quite clearly why we regard the ‘continuous link through time’ as far more
important than an object’s look and feel. It is no longer a link through time but a line
along the time dimension of a four-dimensional physical body. This four-dimensionality
provides a simple and tangible explanation for a physical body’s identity over time.

3.3.2 Car-minus thought experiment

Object semantics also leads to a consistent re-interpretation of the car-minus thought
experiment. In the original experiment, we had the odd situation of my car and
car-minus starting off as different objects and ending up as the same object. Look at the
space-time map of the objects in Figure 7.8.

Figure 7.8:
Space-time map of
my car and car-
minus

We now see my car and car-minus as different objects, irrespective of time, because
they occupy different bits of four-dimensional space-time. There is no temptation to see
their sameness change over time. The parts of these two objects that fall inside the slice

Start Of Week End Of Week

MY NEW CAR

OTHER CAR

Taking Back Seats
Out Event

MY CAR

CAR-MINUS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The shift to object semantics 147

of space-time called today, occupy the same bit of space (and small slice of time). But
because these objects are now four-dimensional, we see this as the result of two four-
dimensional objects with overlapping extension rather than as two three-dimensional
objects occupying the same extension. The object paradigm gives us a consistent, sim-
pler and more sophisticated notion of sameness. It enables us to coherently make dis-
tinctions that are impossible in the logical paradigm.

You may have noticed that we are treating temporal (time) parts in the same way as we
treat spatial parts. We are re-using the patterns we have established for spatial parts on
temporal parts. The steering wheel, gear stick and dashboard are all spatial parts of my
car. My car today is a temporal part of my car. Car-minus is a spatio-temporal part of my
car. Because time and space dimensions are on a par, all these varieties of car parts
are regarded as the same type of thing—spatio-temporal parts of my car. We naturally
extend the spatial whole–part patterns to spatio-temporal whole–parts. We shall see
later on in this chapter (and in the worked examples in Part Six) that when we use
object semantics; these more general, more powerful, patterns for whole–part crop up
frequently. In fact, the next thought experiment uses them.

3.3.3 Chairman thought experiment

We now re-interpret the Chairman of NatLand Bank thought experiment into the new
object semantics. Under logical semantics, the chairman seemed to be a physical body
that changed sameness. It was the same as Mr. Jones at one time and then, later on,
the same as Mr. Smith.

Now look at Figure 7.9; it contains a space-time map of the four-dimensional chairman
object. In this map, Mr. Smith and Mr. Jones have simple straight time-lines. The Chair-
man of NatLand Bank object is less simple. It is composed of temporal parts of Mr.
Smith and Mr. Jones. A time-slice of Mr. Smith’s time-line is his chairmanship. Similarly,
a time-slice of Mr. Jones’ time-line is his chairmanship. The fusion of these two chair-
manships, and all the other chairmanships, is the Chairman of NatLand Bank object.
This object does not change sameness. It is never the same object as Mr. Smith and
Mr. Jones. What logical semantics interpreted as sameness is now re-interpreted as
overlapping.

Figure 7.9:
Space-time map of
the Chairman of
NatLand Bank

At first sight, this notion of a four-dimensional, multi-time-slice, chairman seems odd. It
is made out of pieces of other objects and, a major sticking point, it is not continuous.

Mr Smith
Appointment Event

Mr Jones
Resignation Event

CHAIRMAN OF
NATLAND BANK

(Continued)
MR SMITH

MR JONESCHAIRMAN OF
NATLAND BANK

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
148 Chapter 7 Physical Bodies as Four-Dimensional Objects

For example, there is a discontinuity between Mr. Jones’ resignation and Mr. Smith’s
appointment. We intuitively expect physical bodies to be continuous over time. How-
ever, a radical paradigm shift, such as the shift to object semantics, is bound to lead to
what seem initially like counterintuitive situations.

Object semantics provides a simple and powerful explanation of how Mr. Smith and
then Mr. Jones ‘are’ Chairman of NatLand Bank without being the same object as the
Chairman of NatLand Bank. We now see that they share temporal parts (slices of their
time-lines), but do not have the same overall four-dimensional extension (and, so are
not the same physical body).

We originally introduced this experiment with the ancient question—can two things be in
the same place at once? Within logical semantics, there are reasons for wanting to
answer both yes and no. Now, after the shift to object semantics, we can see why the
question is ambiguous and that we really need to divide it into two separate questions.
First, can two physical bodies overlap completely for a period of time? The answer to
this is obviously yes. Examples are car-minus and the Chairman of NatLand Bank.
Then second, can two physical bodies overlap completely? In other words, can they
have the same four-dimensional extension? The answer to this is no. If they do then
they must be the same object, the same physical body.

3.4 Characteristics of object semantics

These thought experiments provide our first sight of two important characteristics of
object semantics, ones that we will meet again and again. These are:

• Timelessness, and
• Whole–part patterns.

3.4.1 Timelessness

We are accustomed to using one vocabulary and set of patterns for time and another,
different, set for space. However, within object semantics, there is one general set of
patterns for space-time. The four-dimensional perspective of these new patterns leads
to one very important difference; we talk about (and see) objects in a ‘timeless’ way. We
no longer say (using the thought experiments above) that car and car-minus occupied
different extensions last week and the same extensions now. We now say that the four-
dimensional car and car-minus objects share temporal parts. Similarly, we now say that
a temporal part of Mr. Jones is also a temporal part of the Chairman of NatLand Bank.
This new way of talking (and seeing) normally takes a while to become used to (as the-
oretical physicists who work with space-time in Einstein’s theory of relativity will know).
Making the change to this new perspective involves overriding some deeply embedded
mental habits.

3.4.2 Timelessness and individual object identity

Reference and extension fit naturally into this space-time world. The breaches of the
strong reference principle, which we discussed at the end of the previous chapter, dis-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Physical stuff objects 149

appear. Reference and extension no longer vary to explain sameness over time for
physical bodies—they are timeless. Reference is now unchanging, fixed forever to a
timeless four-dimensional extension. And, as the extension is the object, sameness is
no longer mysterious. It is being the same four-dimensional extension.

3.4.3 Re-using the spatial whole–part patterns in space-time

This shift to four-dimensional objects also enhances the power of the whole–part pat-
tern. Shifting from three to four-dimensional extension extends the range of the whole–
part pattern. Furthermore, the physical explanation of whole–part in terms of the exten-
sion of the whole containing the extension of the part is extended from spatial whole–
parts to temporal and spatio-temporal whole–parts. The earlier thought experiments
with their temporal whole–part patterns (such as Mr. Smith sharing a temporal–part with
the Chairman of NatLand Bank) give us some idea of how useful this is.

Currently, most people do not see things in terms of spatio-temporal parts. If we are to
feel comfortable working with object semantics, however, we need to. For instance, if
my car was red last week and green this week, then we need to start instinctively seeing
a red temporal part (stage) followed by a green temporal part (stage), where the tempo-
ral parts are time-slices of the whole car.

Becoming used to a pattern of temporal parts is not as hard as it might be, because the
patterns for temporal parts are not really new. They are based on the familiar spatial
whole–part pattern. The amalgamation of space and time into space-time means tem-
poral parts now work under the same group of patterns as spatial parts. In other words,
the patterns for spatial whole–part are now generalised to also cover temporal whole–
parts—and spatio-temporal whole–parts. We are used to seeing things as spatial parts.
For instance, we have no trouble recognising that a steering wheel is a (spatial) part of
the car. All we need to do is learn to re-use these patterns on temporal and spatio-tem-
poral whole–parts. Part Six contains useful worked examples of how they should be re-
used.

4 Physical stuff objects

The object semantics for physical bodies does more than explain their identity through
change. Through the use of the powerful whole–part patterns we have just been dis-
cussing, it also transforms some of our current notions. Here we look at one example;
how it transforms our current abstract everyday notion of stuff into a down-to-earth
physical body. (This explanation is drawn from the work of W.V.O. Quine. He and other
philosophers have been using it for decades.)

People normally associate stuff with things. The patterns for the two are ancient and
typically contrasted. For example: in standard grammar, nouns are divided into count
and mass nouns. A mass noun, such as water, refers to stuff and a count noun, such as
car, refers to a thing. The philosopher David Lewis has referred to the difference more
light-heartedly as the hunk/gunk distinction.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
150 Chapter 7 Physical Bodies as Four-Dimensional Objects

What distinguishes things from stuff, hunks from gunk? A key difference seems to be
that things are individuals; they stand by themselves. Whereas, stuff is more collective.
If we put two bits of stuff together, then we have one bigger bit of stuff. If we divide a bit
of stuff in two, then we have two smaller bits of stuff. Whereas, if we divide a thing, such
as a car, in two, then all we get is two worthless pieces of junk.

The semantic problem that we set out to resolve is why a general stuff, such as milk in
general, appears to be an abstract notion. Particularly, when bits of stuff are tangible
and have extension. We see how object semantics’ four-dimensional perspective gives
general stuff a tangible physical basis.

4.1 Applying the strong reference principle to stuff

We start by applying the strong reference principle. We ask:
What kind of object is a general stuff?

We focus in on one type of general stuff and ask:
What kind of object is general milk stuff?

We have an idea of the kind of answer we are looking for. According to object seman-
tics, general milk stuff should be a four-dimensional extension (or, maybe, a collection
of extensions). The problem is —which four-dimensional extension? A glass or a jug
can both contain milk. They are different bits of milk, but both bits are still the same stuff,
milk. We are looking for a four-dimensional extension that can explain this.

4.2 Disconnected objects

Before we can see the answer, we need to develop a more sophisticated notion of what
a physical body is. We started with the simple notion of it as necessarily connected in
space and continuous in time (or in four-dimensional terms, connected in space-time).
This was the point of the wrecked car example—the brand new car was connected
through both space and time to the wrecked car—there were no gaps, no discontinui-
ties.

This connectedness helps us recognise simple individual physical objects; it is a vital
part of our early understanding. But as our world grows more sophisticated, it becomes
a liability if taken as a fixed rule. We want to be able to have individual physical bodies
that are not connected. For example, a United States of America, that has as a physi-
cally disconnected part, Alaska.

We saw another simple example of disconnectedness in the Chairman of NatLand Bank
above. The chairman physical body object was not connected in space-time—there is a
temporal gap between Mr. Jones’ resignation and Mr. Smith’s appointment. So individ-
ual physical objects are not necessarily always spatio-temporally connected. But the
spatio-temporal gap in the chairman was small and temporal. We need to be able to tol-
erate wider, more substantial gaps in both time and space before we can see what milk,
water and other general stuffs are.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Classes of four-dimensional objects 151

4.3 Overall stuff

This is because milk, water, and so on are very disconnected objects. Milk, for instance,
is the fusion of all the bits of milk in the world. (The fusion of two or more objects is the
sum of their extensions, another extension, another physical body.) If there is a glass of
milk on the table and a jug of milk in the fridge, then the fusion of these two is one phys-
ical body with part of its extension on the table and part in the fridge. The general stuff
object, milk, contains all the bits of milk here and on the other side of the globe. It con-
tains those that have been and those that will be; it stretches both back and forward in
time. It is the fusion of innumerable bits of milk and so is incredibly disconnected. This is
completely unlike connected physical bodies such as the one we started with, my car. I
call this general stuff object an overall stuff object.

There is only one overall milk object; one overall water object; one overall brass object.
Each of them are overall stuff objects. We talk about something being stuff, if it is part of
the overall stuff object. So the milk stuff in a glass of milk is a part of the overall milk stuff
object. And a brass statue is a (spatio-temporal) part of the overall brass stuff object.

Here, object semantics has given us a simple explanation of what stuff is. It may seem
radically different from our intuitions, and in one sense it is. But it still accords with the
way we talk about stuff. This notion of physical bodies of overall stuff gives an important
role to the whole–part pattern. It is used to help define what counts as stuff; being stuff
is being part of an overall stuff. So the water in my glass is water stuff because it is part
of overall water stuff. In general, the shift to four-dimensional extension leads to an
increase in the range of the whole–part pattern. We will find that it can be used to
explain a number of different, previously unrelated, patterns.

5 Classes of four-dimensional objects

Looking at these patterns for physical bodies has reinforced our understanding of what
one is in object semantics. This will help us understand how to re-interpret the patterns
for the other types of logical object; classes and tuples. Classes are, in logical seman-
tics, collections of objects. Some classes are constructed from collections of physical
bodies. The shift to object semantics for physical bodies affects how we see these
classes. It also resolves a problem that logical semantics’ classes suffer from—the
familiar problem of identity over time. It will help us to understand object semantics’
notion of class, if we see how its resolves logical semantics’ problem.

5.1 Logical semantics’ problem with a class’s identity over time

Once we understand what a class is, we instinctively see individual physical objects
belonging to classes. For instance, we see a car as a member of the class cars; a per-
son as a member of the class persons. This presumes that the class cars and persons
are well-understood objects. However, in logical semantics, this presumption is not war-
ranted. There is a gap between what the semantics says is an individual physical body
and what our intuitions about class says a member is.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
152 Chapter 7 Physical Bodies as Four-Dimensional Objects

A class is a collection of objects. For example, the class cars is a collection of car
objects. Car objects are physical bodies and so extensions. In logical semantics, a car
object is a three-dimensional extension now and was another different three-dimen-
sional extension yesterday and these are somehow the same car. What then is the
class cars? It must be a collection of three-dimensional car extensions, but which col-
lection? Is it all the extensions, historic and present, or only the present extensions? If
we follow the lead of physical bodies and select only the present extensions, then a
class (like a physical body) is continuously re-created. At each new moment of time, a
new class with new members is re-created. We then have a problem explaining in what
way these different classes with different members are the same. In logical semantics,
classes share the same mysterious sameness over time as physical bodies.

5.2 Object semantics’ view of a class’s identity over time

In object semantics, we do not face this problem. A car object is a timeless four-dimen-
sional extension. The class cars is the collection of these objects. Because they are
timeless, it is timeless. This fits in well with our instinctive notion of what a class should
be.

The cars class (like all classes) is timeless, it does not change. An object either is, or is
not, a car (in other words, a member of the class cars)—time does not come into it. This
applies to all objects wherever or whenever they exist. It includes the full four-dimen-
sional extension of the first Model T Ford as well as all cars produced in the year 3000
AD, if there are any (illustrated in Figure 7.10).

Figure 7.10:
Class of spatio-
temporal exten-
sions

This object shift does for classes what it did for individual objects. It fixes the reference
of classes to a single extension (in this case a collection of four-dimensional exten-
sions). This also clears up the explanation of a class’s identity. Two classes are the
same if, and only if, they have the same extension (in other words, if they have the
same collection of extensions). We no longer have to explain how the ‘same’ class has
a different extension at different times.

MODEL T FORD
#147

SIERRA
#258

MODEL 3000
#369

CARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Tuples of four-dimensional objects 153

6 Tuples of four-dimensional objects

Tuples like classes are often constructed out of physical bodies. These tuples, like
classes, have an extension that depends on the extensions of the physical bodies from
which they are constructed. This means that within the logical paradigm, they also suffer
from the problem of identity over time.

We can see this by looking again at the example we originally used to explain tuples in
logical semantics. Consider the couple <Prince Charles, Prince William> which belongs
to the father–son tuples class. It is constructed out of the physical objects Prince
Charles and Prince William. If, at different times, these have different three-dimensional
extensions (as they do in logical semantics), then the couple must also have different
extensions at different times.

As with classes, this problem disappears after the shift to four-dimensional extensions.
Then the tuple’s places are filled with timeless four-dimensional extensions, as illus-
trated in Figure 7.11. When the physical bodies are given a more solid foundation, then
the objects constructed out of them (such as tuples and classes) also share in it.

Figure 7.11:
Tuples with four-
dimensional places

7 A new way of seeing bodies—a key type of thing

The shift to four-dimensional extension gives us a radically different and better founda-
tion for the area of semantics we are looking at now—bodies. It also—as the previous
section explained—gives us a more solid foundation for both classes and tuples of
physical bodies. However, it involves a radically new and different way of seeing things,
one that is much newer than the logical paradigm and so has had much less time to
make its way into the general consciousness.

PRINCE CHARLES

PRINCESS DIANA

PRINCE WILLIAM

PRINCE
WILLIAM

PRINCE
CHARLES

FATHER-SON TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
154 Chapter 7 Physical Bodies as Four-Dimensional Objects

At least with the logical paradigm, the new way of seeing things has worked its way into
our language. For example, we have words for ‘part of’ and ‘member of’, even if we do
not use them as accurately as the logical paradigm demands. Whereas, we have no
obvious words to describe overlapping four-dimensional objects such as Mr. Smith and
the chairman. We have to describe them in a roundabout way—saying ‘Mr. Smith is cur-
rently chairman’. Not many people would understand what we meant if we said ‘the Mr.
Smith and chairman objects currently overlap’.

Intriguingly, the shift to object semantics gives us a more accurate way of seeing same-
ness. Modern western civilisation has a more accurate way of seeing sameness than
oral cultures such as the Huichol Indians (I described this in Chapter 4). We find it diffi-
cult to understand why the Huichol Indians say that corn and deer are the ‘same’. Now
the boot is on the other foot. Someone steeped in the object paradigm finds it difficult to
understand why modern westerners say that Mr. Smith and the Chairman of NatLand
Bank are the ‘same’. The object paradigm has developed a more accurate notion of
sameness that renders this way of speaking obsolete.

From language’s point of view the shift to the object paradigm involves immense
changes. In language, time is currently described using tense. If language is to reflect
the object paradigm’s amalgamation of time and space, we need to develop a tense-
less language that describes space-time. This would be a substantial change.

8 Summary

This chapter has given you an insight into how object semantics works. It has shown
how logical semantics’ time-bound notion of physical bodies as three-dimensional
extension can be re-engineered into a notion of timeless four-dimensional extension.
We have seen how this new notion resolves logical semantics’ problem with explaining
the nature of identity ‘over time’ for physical bodies, classes and tuples.

However, physical bodies are only the first of the two semantic areas unresolved by the
logical semantics that we identified at the beginning of this chapter; the second area is
changes. In the following chapter, we see how object semantics uses spatio-temporal
extension to explain why changes are objects. When this is done, we will have finished
examining the semantic framework of the object paradigm.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 8
Changes as Three-Dimensional

Objects

1 Introduction

2 States as physical body objects

3 Events – a new kind of physical object

4 The time-based ‘consciousness’ of information systems

5 A new way of seeing changes—a key type of thing

6 What’s next

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
156 Chapter 8 Changes as Three-Dimensional Objects

1 Introduction
In Chapters 5 and 6, we found the logical paradigm was not able to consistently explain
one of the key types of things; changes. In the last chapter, we focused our attention on
object semantics’ consistent explanation of physical bodies persisting through change.
In this chapter, we shift our focus to its radically different, much improved and consistent
explanation of changes. It uses two very different types of change objects to do this:

• States, and
• Events.

States are types of physical bodies, much like the physical bodies of which they are
states. Events, on the other hand, are a new type of individual physical object. The pat-
terns of connections between these two types of objects both explain and transform our
current notions of change. The introduction of the new physical event objects extends
the structure of the paradigm (illustrated in Figure 8.1). This only affects the individual
objects level. The structure at the constructed objects level, which contains classes and
tuples, is unaffected.

Figure 8.1:
Structural exten-
sion in the shift to
objects

2 States as physical body objects

We start by looking at object semantics’ explanation of states. The substance paradigm
had a clear vision of what a state is; so, we use it as our starting point. We look at what
it describes as states and then use object semantics to transform these into objects.

We then look at some of states’ common patterns. We start with the common and intui-
tive state–sub-state and state–sub-class patterns. We then get a feel for state’s counter-
intuitive nature by looking at two odd patterns; components as fusions of states and
objects that are states of themselves.

Changes are patterns in time, and states form patterns in time that reflect the changes.
We look at a key element of these patterns, the time ordering of the states.

Finally, we look at state tuples. These are re-engineered from changes of a substance
paradigm’s relational attribute. In object semantics, these attributes have to be re-engi-
neered into tuples of states. They cannot be re-engineered directly into couples, as they
were in the logical paradigm.

C
O

N
S
T

R
U

C
T

E
D

O
B

JE
C

T
S

IN
D

IV
ID

U
A

L
O

B
JE

C
T

S

T
R

A
N

S
-

F
O

R
M

LOGICAL
PHYSICAL

BODY

LOGICAL
CLASS

CLASS
OBJECT

PHYSICAL
BODY

OBJECT

LOGICAL
TUPLE

TUPLE
OBJECT

PHYSICAL
EVENT
OBJECT

CONSTRUCTED
FROM

CONSTRUCTED
FROM

R
E
V

IS
E

C
O

N
S
T

R
U

C
T

E
D

F
R

O
M

C
O

N
S
T

R
U

C
T

E
D

F
R

O
M

C
O

N
S
T

R
U

C
T

E
D

F
R

O
M

C
O

N
S
T

R
U

C
T

E
D

F
R

O
M

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 157

2.1 Substance paradigm’s view of changing states

In Chapter 4, we looked at the substance paradigm’s consistent and coherent view of
changes (based on the now discredited notion of substance). In it, states were not
explicitly particles; but the substance framework gave a clear and accurate explanation
of what they are. If you remember, the attributes of a primary substance can be divided
into two main types: essential and accidental. Essential attributes cannot change, but
accidental attributes can and do change. A state (which comes from the Latin status, to
stand) is what a substance is in when it possesses a particular accidental attribute. We
can see it as the substance for the period of time that the particular accidental attribute
belongs to it. Where an attribute can have a range of values and each value corre-
sponds to a state, we sometimes talk of the state of an attribute.

We can use the lepidopter in Figure 8.2 to explain what a state is, and how it relates to
an attribute value. In the figure, lepidopter substance #1 starts life with an accidental
attribute of caterpillar-ness, which changes to pupa-ness and then butterfly-ness. We
see this as a single attribute that changes value; we have called it the life-stage
attribute. This has as values; caterpillar, pupa and butterfly. Lepidopter substance #1’s
changes are then changes in the value of the life-stage attribute. When the life-stage
attribute has a particular value, we talk of the substance being in a particular state.
When it has the value caterpillar, the substance is in a caterpillar state. It remains in this
state as long as the life-stage attribute continues to have a caterpillar value. When the
life-stage attribute changes to a pupa value, it moves into a pupa state, and so on.

Figure 8.2:
The lepidopter
#1’s states

2.2 Applying object semantics to changing states

Object semantics provides a radical re-interpretation of this view of states. We have
some pretty strong pointers to what this re-interpretation will be. States, in object
semantics, have to be objects. As objects they can either be physical bodies, classes or
tuples (or some new type of object). Whatever they are, they have to have four-dimen-
sional extension (either directly or as a collection of extensions) and so be time-less;
change cannot enter the picture.

2.2.1 Re-interpreting the lepidopter example

With these pointers, physical state objects are not difficult to find. If we look at the
space-time map of the lepidopter example (shown in Figure 8.3), the states stick out
like sore thumbs. They are temporal parts of lepidopter #1. The caterpillar state #2,

LEPIDOPTER
#1

LEPIDOPTER
#1

LEPIDOPTER
#1

TIME

LIFE-STAGELIFE-STAGE LIFE-STAGE
CATERPILLAR PUPA BUTTERFLY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
158 Chapter 8 Changes as Three-Dimensional Objects

pupa state #3 and butterfly state #4 objects divide lepidopter #1 along the time dimen-
sion into three. The three state objects are not a new type of object, but physical bodies,
just like lepidopter #1. What makes them a state is that they are part of another physical
body—in other words, the whole–part pattern connection with lepidopter #1.

Figure 8.3:
Lepidopter #1’s
state objects

Not every part of a physical body is a state. A state object has to be all the spatial exten-
sion of an object over a period of time. For example, a butterfly’s wings are part of the
butterfly, but we do not see them as state objects. Furthermore, if we take a time-slice of
a butterfly, but leave out the wings (illustrated in Figure 8.4), then this is also not a state.

Figure 8.4:
A non-state part

Once we realise what a state object is, we begin to see them everywhere. This should
not be a surprise. If we look at the population of things in the substance paradigm,
states have a big representation. A substance almost always has more than a few
attributes. Most of these are accidental, with at least a few states. So, inevitably, states
are more numerous than substances or attributes.

2.2.2 State identity

This object-oriented way of looking at states as physical objects gives a more accurate
meaning to a state’s identity. It provides a clear and simple way of deciding whether two
states are the same. We can see this from the following thought experiment. Imagine a
young boy with tonsillitis. Assume I meet him twice and on both occasions he is ill with
tonsillitis. On the second meeting, I ask his parents:

Is he in the same state as he was when we first met?

His parents need to interpret the question. It might mean:
1. Is the disease as bad as it was last time I saw him?

Or perhaps:
2. Is this the same disease as he had last time?

LEPIDOPTER
#1

OBJECT

BUTTERFLY
STATE

#4

CATERPILAR
STATE

#2

PUPA
STATE

#3

Time Slice

BUTTERFLY OBJECT

BUTTERFLY WINGS
OBJECT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 159

It is unlikely that I am asking whether the diseased state the boy is in now, is the same
thing as the diseased state he was in the last time we saw him. Our everyday notion of
state is not strong enough to give it an identity.

To see this, imagine that in the period between the two meetings, the boy had recovered
from the first bout of tonsillitis and succumbed to a second, and was now as ill as
before. Then, if the parents interpreted the question as (1) above, they would answer
‘yes’. However, if the parents interpreted the question as (2) above, there are two possi-
ble answers. If the same underlying strain of tonsillitis caused the first and second bouts
of illness, then they would answer ‘yes’. If, on the other hand, there were two different
strains, they would answer ‘no’. In everyday language, even though my original ques-
tion appears to be about a physical state object, it is really just a way of speaking.

In the object paradigm, states are objects with an identity. Let’s assume that disease
state objects are relatively continuous over time. Then, in our example, there are exactly
two ill state objects, each with a clearly defined extension. These are objects #11 & #13
in the space-time map of Figure 8.5. With these state objects, we do not need to work
out what my original question might ‘mean’ to decide on an answer. The states are well-
defined objects and the answer is unambiguously ‘no’. The object paradigm has given
us a more accurate notion of sameness for states.

Figure 8.5:
Ill state objects

2.2.3 State hierarchies

In business object models, I have found that state objects often fall into one, other or
both of two closely linked hierarchy patterns; the state–sub-state and state–sub-class
patterns. We now look at these and see how they are based on two of object semantics’
fundamental patterns: the mereological whole–part and logical super–sub-class pat-
terns.

2.2.3.1 State–sub-state pattern

States can themselves have states and this leads to a state–sub-state hierarchy. For
example, assume that biologists divide the caterpillar state of the lepidoptera’s life-cycle
into an early and a late stage. The space-time map in Figure 8.6 shows this division for
caterpillar state #2. Notice that the early and late stages are state objects (#’s 5 and
6)—they are temporal slices of caterpillar state #2. This is a state–sub-state hierarchy
pattern. It is perhaps easier to see in the hierarchy diagram. of Figure 8.7. You probably
recognised that the state–sub-state hierarchy pattern is based on object semantics’
strengthened spatio-temporal whole–part pattern.

YOUNG
BOY

OBJECT #10

WELL
STATE

OBJECT #12

Second VisitFirst Visit Gets Ill AgainGets Well

FIRST ILL
STATE

OBJECT #11

SECOND ILL
STATE

OBJECT #13

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
160 Chapter 8 Changes as Three-Dimensional Objects

Figure 8.6:
The caterpillar
state’s state
objects

Figure 8.7:
State–sub-state
hierarchy diagram

2.2.3.2 State–sub-class pattern

The state–sub-state pattern should be distinguished from the closely linked, but differ-
ent, state–sub-class-pattern. We can use caterpillar states to illustrate this. Assume that
biologists classify caterpillar's states by colour. Assume also that there are red and
green caterpillars and that they do not change colour. This means that red and green
are not states of the caterpillar. So, for example, a red caterpillar state will be the same
object as the caterpillar state, and so have the same extension. However, it does lead to
a distinction at class level—the class of caterpillars has a red caterpillar and a green
caterpillar sub-class. This pattern is shown in the Venn diagram in Figure 8.8.

Figure 8.8:
The caterpillar
(state) class’s sub-
classes

Caterpillar State
Object #2

EARLY STAGE
CATERPILLAR

OBJECT #5

LATE STAGE
CATERPILLAR

OBJECT #6

LEPIDOPTER
#1

CATERPILLAR
STATE #2

EARLY STAGE
CATERPILLAR

STATE #5

LATE STAGE
CATERPILLAR

STATE #6

PUPA
STATE #3

BUTTEFLY
STATE #4

STATE OF STATE OF STATE OF

STATE OFSTATE OF

RED
CATERPILLARS

GREEN
CATERPILLARS

CATERPILLARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 161

Notice that these are not, like the early and late stages, sub-states of the caterpillar
state, but sub-classes of the caterpillar (state) class. These sub-classes have a state–
sub-class hierarchy pattern. This can be seen more clearly in the hierarchy diagram in
Figure 8.9. This time the pattern is based upon the super–sub-class pattern, not the
whole–part pattern (as with the state–sub-state hierarchy).

Figure 8.9:
State–sub-class
hierarchy diagram

2.2.3.3 Distinct states

In the last two examples, the states we looked at were all distinct; they did not overlap.
They were distinct on two levels—the whole–part and the super–sub-class levels. From
a whole–part perspective, the four-dimensional extensions of the individual early and
late stage caterpillars do not overlap. There is no part of one extension that is also a
part of the other’s extension. This is plain to see from Figure 8.6’s space-time map.

The red and green caterpillar state classes are also distinct, but from a super–sub-class
perspective. No member of the red caterpillar class is also a member of the green cater-
pillar class, and vice versa. This is plain to see from Figure 8.8’s Venn diagram.

Figure 8.10:
Overlapping sub-
states space-time
map

2.2.3.4 Overlapping states

States, however, do not have to be distinct at either the whole–part or the super–sub-
class levels. For example, individual sub-states can overlap; in other words, they can

CATERPILLARS

RED
CATERPILLARS

GREEN
CATERPILLARS

SUB-CLASS OF SUB-CLASS OF

LEPIDOPTER
OBJECT

#1

LEPIDOPTER
OBJECT

#1

CATERPILAR
STATE

#2

PUPA
STATE

#3

INFECTED
CATERPILAR

STATE #8

INFECTED
PUPA

STATE #9

IN
F
E
C

T
E
D

V
IE

W
L
IF

E
S
T
A

G
E

V
IE

W

Infection
Event

Metamorphosis
Event

Recovery
Event

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
162 Chapter 8 Changes as Three-Dimensional Objects

have parts in common. Take the lepidoptera example again. Consider a lepidopter (#1)
that becomes infected while it is a caterpillar (in caterpillar state #2). It is still infected
when it metamorphoses into a pupa state (#3). However, it recovers before it turns into
a butterfly state. This introduces a new ‘infected’ state (#7) that overlaps both the cater-
pillar and pupa states. This means there is an infected caterpillar sub-state #8 and an
infected pupa sub-state #9, as illustrated in space-time map in Figure 8.10.

As before, these states form a state–sub-state hierarchy pattern—shown in the hierar-
chy diagram in Figure 8.11). However, unlike the distinct sub-states that formed a tree
hierarchy, these overlapping sub-states form a lattice hierarchy.

Figure 8.11:
Overlapping sub-
states hierarchy
diagram

Figure 8.12:
Overlapping sub-
classes Venn dia-
gram

State–sub-classes can overlap as well. Assume, in the caterpillar example, that biolo-
gists also classify some caterpillars as extra-large and that both red and green caterpil-
lars can be so classified. As Figure 8.12 shows, the caterpillar state’s sub-classes
overlap.

These overlapping state classes form a super–sub-class hierarchy pattern with the
extra large red and extra large green caterpillar sub-classes at the bottom. This has a
lattice structure (shown in the hierarchy diagram in Figure 8.13).

LEPIDOPTER
#1

CATERPILLAR
STATE #2

INFECTED
STATE #7

INFECTED
PUPA

STATE #9

INFECTED
CATERPILLAR

STATE #8

PUPA
STATE #3

STATE OF STATE OF STATE OF

STATE OF STATE OF

RED
CATERPILLARS

GREEN
CATERPILLARS

EXTRA LARGE
CATERPILLARS

CATERPILLARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 163

Figure 8.13:
Overlapping sub-
classes hierarchy
diagram

2.3 Consequences of timeless state objects

The notion of states as objects that are temporal parts of physical bodies leads to a new
way of seeing them as physical bodies that do not change. This has some counterintui-
tive consequences. To get a better understanding of states, we look at two of them:

• Components as fusions of states, and
• Objects that are states of themselves.

2.3.1 Components as fusions of states

It is a truism that a whole is the sum of its parts. So it would seem reasonable to expect
a thing to be the sum (the fusion) of all its components. However, object semantics
reveals an inherent ambiguity in such everyday talk of components. At any point in time,
it seems quite clear what a thing’s components are. But it becomes much less clear
when we consider different points in time.

Here is an example that illustrates the problem. We expect some of a car’s components
to change. For instance, it is customary to change a car’s tyres when they are worn; it is
illegal not to. When we change a car’s tyre, it stays the same car. It still has its full com-
plement of components. It is just that one of its components has been changed. But
what is this component we are talking about? It is one tyre before the change and
another tyre after the change.

Object semantics gives a clearer and more accurate answer. Look at the space-time
map of the car object #20 in Figure 8.14. This shows that the four-dimensional exten-
sion of the car contains a temporal part of one tyre (#21) followed by the temporal part
of another tyre (#22). At any one time, the car overlaps with only one tyre;. but, over
time, it overlaps with two tyres. (You may recognise this as a similar pattern to the chair-
man thought experiment.) The two tyres have state objects that are ‘components’ of the
car.

CATERPILLARS

EXTRA LARGE
CATERPILLARS

EXTRA LARGE
RED

CATERPILLARS

EXTRA LARGE
GREEN

CATERPILLARS

RED
CATERPILLARS

GREEN
CATERPILLARS

SUB-CLASS OF SUB-CLASS OF

SUB-CLASS OF SUB-CLASS OF SUB-CLASS OF

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
164 Chapter 8 Changes as Three-Dimensional Objects

Figure 8.14:
Car tyre change
space-time map

If this is as far as we go, then the car could be said to have a different component before
and after the change. But this is not at all satisfactory, because it would mean that the
‘components’ change over time—an anathema in our timeless object paradigm. We
need a timeless explanation. We get it by constructing a tyre component from the fusion
of all the ‘component’ tyre states. This is shown in the space-time map as the car’s tyre
component—object #25. It is a component of the car; it is a part of the car; it is a fusion
of the tyre state objects (#’s 23 & 24); and most important of all, it is timeless. This more
sophisticated object-oriented component has none of the inherent ambiguity of our eve-
ryday notion.

2.3.2 Objects that are states of themselves

A different and more counterintuitive situation arises for states that do not change—the
object appears to be a state of itself. In the substance paradigm, a state existed where
there was an attribute that had the potential for change; it need not actually change. If
we translate this into object semantics, it means that a physical body can be a state
object of itself. We can illustrate how this ‘happens’, using the notion of the well state of
a person.

Consider someone who has been ill and is now well—such as the boy with tonsillitis in
the example illustrated in Figure 8.5. He is in a well state that is one of a number of well
state objects whose extensions are time-slices of his overall time-line. Now consider a
super-fit girl with a superb constitution. Her four-dimensional extension, stretching from
birth to death, is a member of the persons class. Assume also that she was perma-
nently in good health (in other words, in a well state) from the day she was born until the
day she died. As her well state’s time-slice stretches from birth to death, it fills her four-
dimensional extension exactly. Extension is the basis of object identity; so it follows that
she is her own well state object (see object #32 in Figure 8.15).

Car Tyre Change Event

TYRE
COMPONENT

#25

CAR
OBJECT

#20

TYRE #21

TYRE #22

TYRE #22'S
COMPONENT

STATE #24

TYRE #21'S
COMPONENT

STATE #23

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 165

Figure 8.15:
Person as a well
state

To see what this means, we need to recognise that what makes a physical body a well
state object is that it is a member of the class of well state objects. And that what makes
it a person object is that it is a member of the class of person objects. So all we are
really saying is that the super-fit person is a physical body (in the object paradigm
sense) that is a member of both the class of well state objects and the class of person
objects. This may feel a bit counterintuitive at first, but it does not lead to any contradic-
tions and it is a necessary result of treating states as four-dimensional objects.

This is a contrived example—used to make a point clearly. A more common example, at
least nowadays, is gender. Most people stay the same gender throughout their life. In
other words, most women belong to the class female and most men the class male.
However, those people who have gender–changes will have a male state belonging to
the class male and a female state belonging to the class female. This means the gender
classes (male and female) contain both whole person objects and person state objects.

Gender provides a good example of the usefulness of taking a flexible view on whether
a class contains individuals or states. There are some species that, unlike us, naturally
change gender and some, like the earthworm, that can be both genders at once. For
these, gender is naturally a state. If we generalise the gender pattern from humans to
animals, it needs to be able to handle these species. If we were flexible about allowing
the male and female humans classes to have states as members, then the generalisa-
tion is trivial.

2.4 State object’s time-ordered connections

Even though time and space share many similar patterns that can be generalised, time
has one useful pattern that space does not. It has a well-defined absolute direction—
from the past to the future. Space’s directions are not so well-defined. The direction that
I, in England, call ‘up’, people on the other side of the world; in Australia, call down; and
people in North Africa, halfway around the globe, call along. There is no absolute direc-

#31 #33#32

PERSONS

PERSON
OBJECT #31

WELL
STATE

OBJECT #33

PERSON & WELL STATE
OBJECT #32

WELL STATES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
166 Chapter 8 Changes as Three-Dimensional Objects

tion in any of space’s three dimensions. Time’s arrow, however, points in only one direc-
tion (leaving aside the extreme conditions considered by modern physicists).

In object semantics, time’s absolute direction is used to enhance patterns, originally
developed for space, to describe the time dimension in space-time. We now look at how
we use these patterns to describe time-ordered connections for state objects.

2.4.1 Sequences of states

A common time-ordered pattern for states is a sequence, where one state naturally fol-
lows another. We tend to talk of one state being before another. We have a natural
image of something being in a particular state, then something happens and it moves
into another state.

However, in object semantics, things do not ‘happen’; the world is timeless. So we bor-
row a pattern from space, generalise it to timeless space-time, and use it to describe
these time-ordered happenings. In space, we can put a number of things in a line, and
then talk about one object being after another. This same pattern, generalised to space-
time, applies to sequences in time of state objects. In the lepidopter example, its three
states can be considered as objects following one after the other, in sequence, along
the time dimension (illustrated in Figure 8.16).

Figure 8.16:
State objects laid
out in space-time

2.4.2 Alternating states

Another common pattern is alternating states. We can use the young boy modelled in
Figure 8.5 to illustrate it. He alternates from an ill (tonsillitis) state to a well state. To
model this using object semantics, we again have to revise our time-oriented everyday
way of speaking. As in the last example, we use the ‘things in a line’ space pattern gen-
eralised to space-time. We see these alternating state objects following, one after the
other along the line of the time dimension (illustrated in Figure 8.17). This shows quite
clearly the state objects alternating between the ill and well state classes

This kind of pattern is common where an object can switch between two states; for
example, when a bank balance alternates between being in credit and overdrawn. Or
the shelf on a warehouse alternates between holding stock and being empty.

CATERPILLAR
STATE #2

PUPA
STATE #3

BUTTEFLY
STATE #4

TIME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 States as physical body objects 167

Figure 8.17:
State objects
alternating
between state
classes

2.4.3 Contiguous states

We can borrow another distinction from space to describe time patterns such as
these—contiguity or, in less technical terms, touching. When a series of objects follow
each other in space, each pair of objects can either be touching or have a gap between
them. This same spatial pattern occurs along the time dimension in space-time. In eve-
ryday language, we say that sequential states either follow each other immediately or
after a time. In object semantics’ timeless view of things, these state objects are either
contiguous (touching) or not.

Figure 8.18:
Chairman state
objects

For example, the lepidopter’s state objects in Figure 8.16 are contiguous. There is no
time gap between the caterpillar state and the pupa state. Contiguity is common in time-
ordered patterns, but by no means universal. The chairman thought experiment, from
the previous chapter, provides us with a counter-example. Mr. Jones as chairman and
Mr. Smith as chairman are two states of the chairman object (shown in the space-time

TIME

FIRST ILL
STATE #11

SECOND ILL
STATE #13

FIRST WELL
STATE #12

SECOND WELL
STATE #14

WELL STATES

ILL STATES

MR SMITH
#63

CHAIRMAN'S
MR SMITH
STATE #65

CHAIRMAN'S
MR JONES
STATE #64

MR
JONES
#62

CHAIRMAN'S
MR SMITH
STATE #65

CHAIRMAN'S
MR JONES
STATE #64

CHAIRMAN OF
NATLAND BANK

STATE #61

Temporal Gap

Tuesday Thursday

M
R

S
M

IT
H

'S
A

N
D

M
R

JO
N

E
S
'S

V
IE

W
C

H
A

IR
M

A
N

'S
V

IE
W

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
168 Chapter 8 Changes as Three-Dimensional Objects

map in Figure 8.18). However, Mr. Jones resigned as chairman on Tuesday and Mr.
Smith was appointed the new chairman on Thursday. So there is a temporal gap
between the two states. Because of no intervening chairman state, the same temporal
gap exists for the chairman object. It is disconnected with no four-dimension extension
between the resignation event on Tuesday and the appointment event on Thursday.

2.5 State tuples—tuples with state object places

So far we have not considered the impact of states on tuples; we do so now. In the sub-
stance paradigm, relational attributes were attributes and so could, in principle, change.
For example, consider a car owned by a garage. In substance-speak, this is a car sub-
stance with an owned by relational attribute. This attribute can change. In fact, as the
garage is trying to sell the car, it is likely to change. Assume the garage does sell the car
to Ms Brown. The owned by attribute changes; it no longer points to the garage, it points
to Ms Brown (illustrated in Figure 8.19).

Figure 8.19:
Changing car own-
ership attribute

How do we interpret the ‘owned by’ attribute in object semantics? We cannot simply fol-
low the logical paradigm’s treatment of relational attributes. Then we would re-engineer
the attribute into a tuple object belonging to an ‘owned by’ tuples class. The tuple would
start with the three-dimensional extension <car, garage> and then switch to the three-
dimensional extension <car, Ms Brown>.

The problem is that this logical tuple changes, which tuples should not do in the object
paradigm. If we are a little more sophisticated, we can resolve this problem. We need to
construct the tuple from states of the car object, rather than the car object itself. Then,
we have an object that captures the change pattern.

We divide the car object into states either side of the sale event. It has a car ‘owned by
garage’ state (object) before the sale and an ‘owned by Ms Brown’ state (object) after
the sale (illustrated in Figure 8.20). We then use these state objects to construct two
couples:

• <car owned by garage state, garage>, and
• <car owned by Ms Brown state, Ms Brown>.

These are the couples that belong to the ‘owned by’ tuples class. This neatly captures
the change in a time-less way. You will have noticed that the car owned by state objects

GARAGECAR GARAGE

MS BROWN

BEFORE AFTER

TIME

CAR MS BROWN

MS BROWN

GARAGE

OWNED BY

OWNED BY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Events – a new kind of physical object 169

(like the lepidopter state objects in Figure 8.16) fall into a natural time-ordered
sequence.

Figure 8.20:
Car ownership
state objects

3 Events – a new kind of physical object

So far in this chapter, we have looked at states. We saw how, under object semantics,
these state objects are four-dimensional physical bodies—just like the physical bodies
of which they are states. For example, the caterpillar state is as much of a physical body
as the lepidopter object it is a state of.

We now look at the second type of object that the object paradigm uses to model
changes, events. Unlike state objects, these are a new type of fundamental particle.
What pattern underlies this particle? We touched upon it at the end of Chapter 6. There
we talked about how, within the logical paradigm, dynamic classification was not an
object and so could not make use of the class and tuple patterns.

We now look at how object semantics transforms dynamic classifications into a new
kind of object—event objects. We first look at what event objects are and the patterns
they generate. Then we see how they capture and transform our ordinary notions of
cause and effect—and much more—giving us an insight into understanding.

3.1 The object paradigm’s shift to event physical objects

We now look at the shift to event objects from the logical paradigm’s dynamic classifica-
tions. We identify the extension of these events, establishing them as objects. Then we
look at the following patterns:

• The object versions of the happens–to and happens–at patterns,
• The encapsulation of complex events, and
• The object version of state change events.

3.1.1 Physical events as three-dimensional objects in a four-dimensional world

In some ways, our everyday intuitions about events anticipates object semantics. We
say that the car accident happened at 10:00 am or that Mr. Smith was appointed Chair-
man of NatLand Bank at 2:47 pm. We see these events as happening at a point in time.

CAR
OBJECT

#71

CAR OWNED BY
MS. BROWN
STATE #73

CAR OWNED BY
GARAGE

STATE #72

Car Sale
Event

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
170 Chapter 8 Changes as Three-Dimensional Objects

This contrasts with the physical bodies that the changes happen to, objects such as the
car in the accident and Mr. Smith. These we instinctively see as persisting through time.

Object semantics respects this distinction. In it, events (unlike physical bodies) do not
persist through time. To see what they are (what extension they occupy), consider the
Chairman of NatLand Bank example again. Assume that the Mr. Smith’s appointment to
chairman event occurred at exactly 2:47 pm. Look carefully at the space-time map of
this event in Figure 8.21. The only candidate for the event is the moment in Mr. Smith’s
time line that he is appointed chairman. This is a slice of his four-dimensional extension
at precisely 2:47 pm.

Figure 8.21:
Mr. Smith’s
appointment event
space-time map

While event and states are both time-slices, unlike states, events do not persist through
time. They have zero thickness along the time dimension, because they only occupy an
instant in time. This gives us a very neat distinction between physical bodies and physi-
cal events. Physical bodies persist through time; whereas, physical events do not. This
makes bodies four-dimensional and events three-dimensional, but three-dimensional in
a four-dimensional world. This gives a clear and simple way of distinguishing events
(changes) from bodies; the first and fourth of our key types of things.

Figure 8.22:
Legend of event
icons for space-
time maps

3.1.1.1 Drawing events on space-time maps

It is not easy to see the event in Figure 8.21; it is a line at the very edge of a box. To get
around this problem, I adopt a policy of turning the events in space-time maps into
icons. This has the disadvantage of appearing to give them extension along the time
dimension, but I find that this is more than outweighed by the advantage of being able to
see them clearly. To signal that the time dimension is suspended for the icons, I put
them in event visibility boxes. The most common events are the ‘creation’ or start and
‘completion’ or end events for physical bodies, and these have their own icons; a star
for creation and a rectangle for completion. These icons have been used in most of the

MR SMITH
OBJECT

#63

CHAIRMAN'S
MR SMITH
STATE #65

2:47

LEGEND OF EVENT ICONS

General
Event
Icon

General Event
Within an Event

Icon

Event
Completion

Icon

Event
Visibility

Icon

Creation
Event
Icon

 Double Creation
Event
Icon

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Events – a new kind of physical object 171

space-time maps in this chapter, for instance in Figures 8.18 and 8.20. There is also a
general event icon, which we have not used yet. To help you identify the icons, Figure
8.22 gives a legend.

Most people will initially find it odd seeing an event as a three-dimensional slice of a
physical body. Part of the problem is that the extension by itself does not seem like an
event. However, we need to remember Frege’s definition of meaning as composed of
sense and reference (discussed in Chapter). The three-dimensional extension is only
the reference; the sense is the event’s relevant connections to other objects. In other
words, the pattern of connections between it and other extensions some of which are
modelled in the space-time maps. The extension and the sense combine to make up
the meaning.

For example, the appointment event time-slice of Mr. Smith does not stand by itself. It
acquires meaning by being put into context with the other objects; some of which we
have not shown. For example, the Board appointed Mr. Smith chairman, so there is a
connection between the Board and the appointment event. We look in more detail at
these types of ‘causal’ connections in a later section.

3.1.2 The happens–to (whole–part) tuple

Seeing an event object as a three-dimensional extension in a four-dimensional world
enables us to see a number of new patterns. One such pattern is the ‘happens–to’
tuple. This neatly illustrates how, in object semantics, analysis often becomes a matter
of mapping patterns of connections between extensions, typically involving the whole–
part pattern.

We loosely say that the appointment event ‘happens to’ the chairman. In the substance
paradigm, this would be explained as Mr. Smith’s substance acquiring a chairman
attribute. In the logical paradigm, as Mr. Smith being dynamically classified as a chair-
man. In both paradigms, the ‘happens–to’ connection is not captured by its fundamental
particles and so, in a sense, is outside their scopes. It is neither a substance, an
attribute, a tuple or a class—it is certainly not a physical body.

Figure 8.23:
Happens–to tuples
class

CHAIRMAN
OF

NATLAND
BANK

MR. SMITH
APPOINT-

MENT
EVENT

HAPPENS TO TUPLES

WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
172 Chapter 8 Changes as Three-Dimensional Objects

In object semantics, the ‘happens–to’ tuple is an extension and so an object within the
scope of the paradigm. To understand it, we need to, at least, map its pattern of connec-
tions with other extensions. In the case of the chairman’s appointment, the most impor-
tant connection is that the extension of the event is a part of the extension of the
chairman. This is visible in the space-time map in Figure 8.21 This means that the
<chairman, Mr. Smith’s appointment event> couple not only belongs to the ‘happens–to’
tuples class, but also the whole–part tuples class. This is generally true of all ‘happens–
to’ couples, which means the ‘happens–to’ tuples class is a sub-class of the whole–part
tuples class (illustrated by Figure 8.23.

3.1.3 The happens–at (whole–part) tuples

There is another useful connection in our example, the happens–at pattern. When we
described the earlier example we said:

Mr. Smith was appointed Chairman of NatLand Bank at 2:47 pm.

In other words the appointment event happened at 2:47 pm. This raises the interesting
question of:

What is the 2:47 pm object?

We need to know because it occupies one of the places in the happens–at couple
(which is <2:47 pm, Mr. Smith’s appointment event>).

Object semantics approach to this is, as usual, simple but radical. It proposes an exten-
sion for the instant 2:47pm. But what extension? We know its temporal dimensions.
Because it is instantaneous, it has zero time dimension. What are its spatial dimen-
sions? The object paradigm proposes that it is the whole of space (at that instant 2:47
pm). So it is the instantaneous time-slice through the whole of space-time at 2:47 pm.
Because it is an instantaneous time-slice, it is three-dimensional with zero time dimen-
sion. Under object semantics’ distinction between bodies and events, this makes it an
event. This interpretation of 2:47 pm means that Mr. Smith’s appointment event is part
of the 2:47 pm instant event. So the happens–at tuples class, like the happens–to tuples
class, is a sub-class of the whole–part tuples class (in pattern-speak, the happens–at
pattern is part of the whole–part pattern).

3.1.3.1 Time objects

We now have the key to explaining what a day, a month and a year are in object seman-
tics. Let’s take 25th May 1999 as our example. We want to find out what its extension is.
We intuitively think of this day lasting for twenty-four hours. In object semantics, this
means that the time dimension of the day object is twenty-four hours long; starting at
just after midnight on the 24th and finishing at midnight on the 25th. We now know its
time dimensions, but what about its spatial dimensions? It follows the same pattern as
the 2:47pm instant object; it is all of space between those two times. Similar transforma-
tions into physical bodies are made to months and years. Object semantics physicalises
time. We shall look at these time patterns in more detail in the worked example in Chap-
ter 17.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Events – a new kind of physical object 173

We have some intuition that spatial whole–part and temporal whole–part patterns are
similar. We routinely use the same prepositions for both
patterns—saying:

I went to Brighton in 1999. and
The hat is in the box.

However, our use of prepositions does not always tie in with the object paradigm’s
understanding. We don’t say;

I went to Brighton in the 25th May.

but
I went to Brighton on the 25th May.

How this temporal ‘on’ is related to the spatial ‘on’ is unclear.

Furthermore we do not normally see days as spatio-temporal objects. If we did, we
might say:

My trip to the Brighton object is in the 25th May object.

As we can see our use of language has not caught up with the object paradigm’s more
general and conceptually coherent notion of whole–part.

It should come as no surprise that the notion of event we have just examined bears a
strong similarity to Einsteinian physics’ definition of an event as a point in space-time—
something with zero spatial and temporal dimensions. After all, the notion of space-time
was borrowed from Einstein’s theory to begin with. To explain the types of events that
happen to the people-sized objects that business modelling deals with, we extended the
physicists’ definition of an event to encompass spatial dimensions.

3.1.4 Encapsulating complex events

So far we have been looking at examples of simple events occurring to one particular
physical body. We now look at the encapsulation of more complex series of events. We
see how object semantics explains complex events as encapsulations of simple events.

When two or more events are encapsulated into a single more complex event object,
this new object is the fusion of the extensions of the encapsulated events. In a similar
fashion to overall stuff (discussed in the last chapter), the complex event has a discon-
nected extension. For example, assume two people reach an agreement (also assume
that this is done over the phone to make sure their extensions are disconnected). In
object terms, there is an overall agreement event for both people. This is the fusion (or
encapsulation) of the two agreement events for the individual people. Figure 8.24 illus-
trates this. The encapsulated event has a single disconnected extension composed of
the fusion of the extensions of the two component events.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
174 Chapter 8 Changes as Three-Dimensional Objects

Figure 8.24:
Encapsulated
events

This same principle of encapsulation (fusing the component extensions) applies to
much more complex events. Consider the Second World War. This is a single complex
event object, but it is also a very complex network of events. It is the fusion of the exten-
sions of a large number of simple events that happened to physical bodies. These form
the base of an encapsulation (whole–part) hierarchy of more and more complex events,
with the Second World War at its apex. Each of the smaller events is encapsulated into
(a part of) one or more of the larger events. So, for example, the evacuation from Dun-
kirk and the D-Day landings are both encapsulated into (parts of) the overall complex
Second World War event.

At first sight, it may seem that a complex event such as the Second World War persists
through time. We (in Britain) talk about it starting in 1939 and ending in 1945. But there
is a distinction to be drawn here. While the complex event may have parts in both 1939
and 1945, this does not mean it persists between 1939 and 1945. Because each of the
simple parts has zero thickness along the time dimension, the total thickness of the
fusion of these parts is the sum of the thickness of its parts. Now 0+0=0, even (mathe-
maticians tell us) if we do it an infinite number of times. In the Second World War’s case,
we are adding a large, but finite, number of zeros. So no matter how many events make
up the complex Second World War event, it still has zero time dimension and so stub-
bornly remains a three-dimensional event.

3.1.4.1 Complex events without a body

The new way of looking at complex events leads to a conclusion that is obvious but
incapable of being captured properly in previous paradigms. Complex events do not
always happen to a physical body. Indeed most of them, like the complex agreement
event in Figure 8.24 and the Second World War, do not. In the substance paradigm, a
change always happened to an attribute belonging to a substance. In the logical para-
digm, a change happened to an object that was dynamically classified. In object seman-
tics, simple events happen to a physical body, such as Mr. Smith’s appointment
happens to Mr. Smith. But a more complex event does not have to. As in the complex

C
O

M
P

L
E
X

A
G

R
E
E
M

E
N

T
S

V
IE

W

Complex Agreement
Event Object #85

FIRST PERSON
OBJECT #81

SECOND PERSON
OBJECT #82

First Person Agreement
Event Object #83

Second Person Agreement
Event Object #83

FIRST PERSON
OBJECT #81

SECOND PERSON
OBJECT #82

S
IM

P
L
E

A
G

R
E
E
M

E
N

T
V

IE
W

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Events – a new kind of physical object 175

agreement event in Figure 8.24, its constituent simple event parts each happen to a
physical body, but not usually the same one. As more events are encapsulated into a
complex event, it gets more and more unlikely that they will have a physical body in
common. In other words, it is unlikely that the extensions of all the individual events
would be temporal parts of a single physical body. Typically, they are spread over a
number.

These complex events without bodies have interesting repercussions for current O-O
programming languages (OOPLs). Methods are, in some ways, OOPLs equivalent of
events and ‘objects’ its equivalent of bodies. In most OOPLs, methods are firmly tied to
‘objects’ (in the object semantics’ way of speaking, events are tied to bodies). In this
environment, complex events, such as the Second World War, have to be squeezed
into the framework. A technique often used is to create a pseudo-object (in our terms, a
body) for the event to happen to. So there would be a Second World War ‘object’ for the
complex Second World War event to happen to. As we have noted in the Prologue, O-
O programming is, in some ways, a halfway house with elements of both the substance
and object paradigms; insisting events have to happen to ‘objects’ is one example.

3.1.5 Object-version of state change events and Zeno’s paradox

It would seem that we now have a consistent and coherent picture of what event objects
are and how they have extension. We have seen how events differ fundamentally from
bodies. They only have three-dimensional spatial extension, with zero temporal exten-
sion—unlike bodies, which have a temporal dimension, and so persist through time.

However, there is a small area left, state change events, with an outstanding problem—
Zeno of Elea’s paradox. We first met this paradox in Chapter 4 where we saw how the
substance paradigm resolved the paradox using the now discredited notion of sub-
stance. We looked at it again in Chapter 6 , where we saw the problems it caused in the
logical paradigm if change was treated as an object with extension. If we do not see cer-
tain types of events in the right way, the paradox appears to cause problems for object
semantics as well.

We can see why by looking again at the change example in Chapter 6 (see Figure
6.21). This assumes that there is a tomato changing colour—from green to red. The
problem is that the instantaneous colour change has extension, albeit three-dimen-
sional, and so has a colour. And the colour cannot be either green or red; otherwise, it
would not be a change.

The object paradigm does not seem to have resolved this problem. The simple event
we re-engineer from the instantaneous colour change has the same problems as its log-
ical predecessor. We need to be more sophisticated in our re-engineering. We need to
re-interpret the instantaneous colour change as a complex encapsulation of two events.
This is the encapsulation of the completion event of the before state and the creation
event of the after state (illustrated in Figure 8.25). Zeno’s paradox is no longer paradox-
ical because the encapsulated event does not have to have a single colour.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
176 Chapter 8 Changes as Three-Dimensional Objects

Figure 8.25:
Complex event of
the tomato chang-
ing colour space-
time map

3.2 Events, causes and effects

We now have a consistent semantics for events as a new type of physical object. Unlike
the dynamic classifications of the logical paradigm, they are objects, and so they can
make use of the class and tuple patterns. They can be collected into classes or
arranged into ordered tuples, just like any other object. They can have whole–part and
super–sub-class patterns. They have, however, another equally important aspect. They
are the basis for time-ordered patterns that capture and transform our ordinary notions
of cause and effect. In the patterns, events explain the link between causes and effects.

In object semantics, the cause and effect connections are used to describe and explain
a far wider range of patterns than is traditional in modern times. The semantics’ notion
of cause has more to do with understanding (and explaining)—the objective of business
modelling, as we recognised in the Prologue—than operation. It turns out that this
approach has many similarities with the wide ranging ancient framework for cause orig-
inally brought together by Aristotle. We now look at this framework and see how it
develops into the object paradigm’s.

3.2.1 Aristotle’s approach

Aristotle saw causes as explaining an event, helping us to understand it. So, to us, his
classifications of cause seem to be explanatory principles; for example, he includes
what we see as effects (the results or consequences of the event) as causes. He syn-
thesised his framework from a number of traditions and the result was four types of
cause or explanation:

• The efficient - that which makes a change happen,
• The material - what the change happens to,
• The formal - what the change results in, and
• The final - the end or purpose of the change.

Aristotle believed all of these were needed to give a proper explanation and criticised
his predecessors for emphasising some to the neglect of others. A similar criticism
could be made of our modern attitude, which often restricts us to the efficient cause—
that which makes a change happen.

To see how Aristotle’s approach works, consider a sculptor who has carved a statue
from a block of marble. In this case, the types of cause are:

TOMATO
OBJECT

#91

RED COLOUR
STATE
#93

GREEN COLOUR
STATE
#92

Complex Colour
Change Event

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Events – a new kind of physical object 177

• The sculptor is the efficient cause, because he carves the block of marble
into the statue.

• The marble is the material cause, because it is what the change happens
to.

• The statue is the formal cause, because this is what the sculptor wanted to
carve.

• The sale is the goal or final cause, because sculptor made the statue to
sell.

Aristotle was suggesting that when we describe all four types of cause (as we have just
done here), we are giving a description of everything we need to know to understand
the event.

3.2.2 Object semantics’ approach

In object semantics, Aristotle’s types of cause translate neatly into time-ordered pat-
terns involving events. These are the event object’s equivalent of the state object’s time-
ordered patterns we looked at earlier. As with the state object’s patterns, we can illus-
trate the patterns with space-time maps.

Look at Figure Figure 8.26. It is a space-time map for the sculptor carving a statue—
with an additional event, the sale of the statue by the sculptor. To make the patterns
more visible, we assume that the complex encapsulated process of carving the statue
and the sale are both simple instantaneous events. (People versed in current O-O think-
ing can see this as the business modelling’s equivalent of OOPL’s ‘information hiding’.
The cause is a connection with the complex encapsulated event not its simple parts.)

Figure 8.26:
Sculptor carving a
statue space-time
map

Each of Aristotle’s four types of change appear in the space-time map. Their links to the
carving event are illustrated with arrows. Underlying each arrow is a pattern of connec-
tions between the extensions of the objects involved in the statue carving event

BLOCK OF MARBLE
#102

SCULPTOR
#101

STATUE
#103

MATERIAL CAUSE

EFFICIENT CAUSE

FORMAL CAUSE

FINAL CAUSE

Carving
Event #104

Statue Sale
Event #105

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
178 Chapter 8 Changes as Three-Dimensional Objects

The efficient cause is the sculptor who carved the statue. In more modern terminology,
the sculptor is a pre-condition for the carving event. This is analysed as a tuple between
the sculptor physical body and the carving event (the couple belonging to the cause
tuples class). In time ordering terms, the sculptor physical body extension must ‘exist
before, during and after’ the carving event extension.

The formal cause is the statue that is a result of the carving event. In modern terminol-
ogy, the post-condition of the carving event. This is analysed as a connection between
the carving event and the statue physical body. The carving event is a complex (encap-
sulated) event. The statue is a state object of the marble object, whose creation event is
part of the carving event. This means the connection between the statue and the carv-
ing event is one of overlapping parts.

The material cause is the block of marble that is carved. This is also a pre-condition for
the carving event, though one with a different time pattern to the efficient cause. This is
analysed as a connection between the block of marble and the carving event. The con-
nection has an overlapping pattern because the block of marble contains the statue
object’s creation event, which is part of the carving event. Like the efficient cause pre-
condition, the block of marble extension must ‘exist before, during and after’ the carving
event extension.

Object semantics leads to a counterintuitive situation for the material cause, where the
cause connection pattern is also a whole–part pattern. The cause is a couple, <block of
marble, statue>, which belongs to the cause tuples class. This couple also belongs to
the whole–part tuples class, because, as we can see from the space-time map, the
statue is part of the block of marble. In other words, the connection is both cause and
whole–part. We instinctively differentiate between cause with its roots in time and
whole–part with its root in space. However, as this example shows, in space-time our
instinctive reactions are misleading.

Last, the final cause is the eventual sale of the statue. This is analysed as a connection
between the carving event and the sale event. In time ordering terms, the carving event
‘precedes’ the sale event. There are also other less important patterns; for instance, ele-
ments of the sale event are part of the efficient cause and the material cause.

This shows how working out the Aristotelian causes is part of the overall task of map-
ping the sense of an event. When we analyse the pattern of connections between the
extensions of the objects involved in the statue carving event, we naturally unearth
them. This also shows that Aristotle and his predecessors intuitively understood the
physical time patterns that object semantics make explicit. Their categorisation reflects
the various aspects of the different underlying time patterns that explain the event. It by
no means exhausts the time patterns that occur, but it does give us some idea of the
most common patterns. It also gives us a feel for how analysing the patterns of connec-
tions between extensions can explain an event.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 The time-based ‘consciousness’ of information systems 179

4 The time-based ‘consciousness’ of information systems

One of the prime characteristics of the object paradigm is the time-less nature of its
objects. They give us an ‘objective’ view, independent of any particular information sys-
tem at any particular time. This is an extremely powerful way of seeing the world. How-
ever, there is one aspect of an information system that cannot, whatever we do, be
captured in a totally timeless way. This is its shifting position in time. From the informa-
tion system’s perspective, its ‘consciousness’ exists at a point in time that is moving
inexorably along the time dimension.

Computer systems are information systems and so they have a time-based ‘conscious-
ness’. They reflect this in their information; when the computer system’s ‘conscious-
ness’ is in the 24th May 1999, the leg of a deal that settles on the 25th May 1999 is
classified as awaiting settlement. When its consciousness moves onto the 25th May
1999, it is re-classified as due today. This is a change in the computer’s ‘conscious-
ness’; nothing has happened to the settlement. We need to be able to capture this in our
business models.

4.1 The dynamic ‘here’ event

We do this by introducing a new kind of class object—the dynamic class or dynaclass.
To reflect the information system’s consciousness moving down the time dimension, we
use the dynamic ‘here’ event class. To explain what this object is, we first need to iden-
tify the system itself. It is a simple physical body, the four-dimensional extension of the
system. We can then construct the new type of object that represents the moving con-
sciousness—the dynamic ‘here’ event class. It is a class with a single member, the
three-dimensional time-slice of the system at the instant of time that the consciousness
is aware of. The time-slice’s zero length time dimension makes it an event.

Figure 8.27:
The dynamic ‘here’
event class space-
time map

#113#112

SYSTEM
OBJECT
#111

SYSTEM
OBJECT
#111

Here Object
#113

Here Object
#112

25th25th 26th26th

HERE EVENT
CLASS #110

HERE EVENT
CLASS #110

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
180 Chapter 8 Changes as Three-Dimensional Objects

This event behaves in a similar way to the three-dimensional extensions of physical
bodies in the logical paradigm. As the system’s consciousness moves down the time
dimension, the ‘here’ event class dynamically changes its member to the system’s cur-
rent three-dimensional time-slice. It is called dynamic because, unlike other objects, it
changes. Two ‘versions’ of the dynamic ‘here’ event class are illustrated in the system’s
space-time map in Figure 8.27.

4.2 The dynamic ‘now’ event and the dynamic ‘current’ tuples class

We need to find a way to link the dynamic ‘here’ event class to non-dynamic objects.
We do this through another dynamic class,—the ‘now’ event class. This is also a class
with a single member, the instant that the ‘here’ member event occupies—in other
words, the whole of space for that instant. Like the ‘here’ event class, it is dynamic, with
its member tracking the system’s consciousness.

Once we have the ‘now’ event class, we can use it to construct a dynamic current tuples
class for any class of physical objects. Consider, for example, the class cars. Some of
the members of this class will exist now. Speaking timelessly, they have a temporal part
that is part of the now object. For each of these cars we can construct a couple, <now,
car> (illustrated in the space-time map in Figure 8.28). All these couples belong to the
current tuples class. Those cars that do not overlap with the now object, do not have a
couple in the current tuples class.

Figure 8.28:
The dynamic cur-
rent tuples class
space-time map

The current tuples class is dynamic, because one of the places of its couple is dynamic,
making the couple dynamic and so the class it belongs to. These dynamic couples pro-
vide us with the link between the time-bound ‘consciousness’ of the system and the
timeless world of object semantics.

4.3 Implementing dynamic (state) classes

The objective of business modelling is understanding and so I try to keep the dynamic
classes to a minimum. However, when building the system, there may be good opera-

#124 #122

#123

SPACE-TIME
#121

CAR #122

NOW CLASS #124

CURRENT TUPLES

NOW OBJECT
#123

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 A new way of seeing changes—a key type of thing 181

tional (as opposed to understanding) reasons for designing dynamic classes for imple-
mentation. For example, a system may only need to keep a record of all the current
state objects and have no interest at all in historical state objects. In this case, imple-
menting a dynamic class that only reflects the current state makes sense. It would be a
waste of information storage space to hold details of the previous states. However, we
do not have to consider these issues when constructing the business model.

5 A new way of seeing changes—a key type of thing

This chapter provides us with a revised semantics for the fourth and final key type of
thing—changes. Unlike previous paradigms, the object paradigm brings changes explic-
itly within its remit. Changes are event objects and share the patterns common to
objects.

This is a radical change;, one that, as we expect by now, requires a completely new way
of seeing, thinking and talking about things. This enables us to see the world more
accurately. The tyre component example illustrates this (see Figure 8.14). Where,
under the logical paradigm, we would see a tyre as simply a part of a car, object seman-
tics reveals a more accurate and sophisticated pattern of overlapping parts.

Furthermore, the new way of seeing is really new. Unlike the logical paradigm’s ‘mem-
ber of’ and ‘part of’ patterns that have begun to work their way into ordinary everyday
language, object semantics has made next to no inroads.

Object semantics’ timeless view of the world has had some impact. Expressions like
‘time-line’ for four-dimensional objects have been imported from Einsteinian physics.
But we still see and talk of them in a time-oriented way. We talk of things moving down
their time-line, bringing time into the four-dimensional world. Furthermore, most people
still think of a period of time starting and ending. They do not see it as a physical body
containing all of space for period of time. They certainly do not see an hour as a physi-
cal object that is a spatio-temporal part of a day object, though they may talk of hours
being ‘in’ a day.

Otherwise, there is very little evidence of object semantics impact on everyday lan-
guage. There are no words for:

• An event as an instantaneous time-slice of a four-dimensional object,
• A complex event as a fusion of extensions of simpler events, and
• An instant as a time-slice through space-time.

This is hardly surprising. Object semantics is under a hundred years old and things as
fundamental as semantics can take much longer to work themselves into the popular
consciousness.

We can talk about objects in a timeless way by twisting our language. The traditional
way of dealing with time in language is through tenses. We can describe the timeless
four-dimensional world in a tenseless way by only using one tense, the present tense.
We can start saying sentences such as ‘the well state extended along the time dimen-
sion as far as 25th May’. We have done this, to some extent, in this chapter.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
182 Chapter 8 Changes as Three-Dimensional Objects

6 What’s next

This discussion of language leads neatly onto the subject of the next chapter. Language
is not a suitable format for describing a formal and sophisticated semantics, such as the
object paradigm, with any accuracy. Once people start seeing and thinking in the new
object-oriented way, they need an accurate means of modelling their four-dimensional
world. That is the topic of the following chapters in Part Five. There we will look at the
object syntax, and its notation, that together with object semantics form the object para-
digm. People generally find that working through this gives them a more ‘substantial’
feel for object semantics.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part Five
Constructing Signs for Business Objects

Chapter 9 Constructing Signs for Business Objects

Chapter 10 Constructing Signs for Business Objects’
Patterns

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 9
Constructing Signs for Business

Objects

1 Introduction

2 Constructing signs for individual objects

3 Constructing signs for classes of objects

4 Constructing signs for tuples

5 Constructing signs for whole–part tuples

6 Constructing signs for dynamic objects

7 Signs as objects—modelling the model

8 What’s next

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
186 Chapter 9 Constructing Signs for Business Objects

1 Introduction
In Part Four, we developed an understanding of what business objects are. However,
that was only a precursor, albeit an important one, to the real business of modelling.
The accuracy and flexibility of object semantics give us a powerful way of seeing the
business. We harness this power by building models that describe what we see.

Here, in Part Five, we focus on object syntax—in other words, on how we ‘write’ the
signs for objects and their patterns. We learn a notation for describing business objects
in models. In this chapter we look at the individual signs for the main types of business
object. These are the signs with which we build the business object model. We focus on
what they mean and how they work. Then, in the next chapter, we look at signs for busi-
ness objects’ patterns.

Together Part Five’s two chapters help us to develop an understanding of object syntax
and the notation for business object models. They also deepen and broaden our under-
standing of object semantics. Using a notation for describing objects naturally leads to a
better understanding of them. For example, because the notation explicitly signs the key
structural patterns (super–sub-class, class–member and whole–part) these are clearly
visible and so easier to understand. And because the notation gives each pattern a dif-
ferent sign, it helps us see that they are different.

Learning this notation is essential for Part Six, where we work our way though examples
of re-engineering existing computer systems into business objects. As well as providing
useful illustrations of both object semantics and object syntax, these examples will pro-
vide us with further experience of how the notation is used.

1.1 Main types of business object

In this chapter we look at the object notation’s basic signs for the following main types of
object:

• Individual objects,
• Class Objects,
• Tuple objects (and, more specifically, whole–part tuple objects), and
• Dynamic objects.

We see how the signs are constructed, what they mean and how they are used.

1.2 Why use a two-dimensional notation for a multi-dimensional model?

Before we look at the notation, I should explain why it is two-dimensional. I have
asserted a number of times that objects free us from the two-dimensional constraints
imposed by paper and ink technology. I have suggested that this enables us to take
advantage of computer technology’s ability to handle multi-dimensional structures.
However, the notation we are about to look at is on paper and so only two-dimensional.
Why is this so and why doesn’t it constrain the overall business model to two dimen-

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Constructing signs for individual objects 187

sions? To understand the answers to these questions, we need to look closely at the
‘technology’ that we use when business modelling.

Modelling the business is currently done by humans. It is human brains, and not com-
puters, that construct and revise the business model. This means that the human mind
needs to ‘interface’ with the business model. The object notation has to be easily read
by humans.

Human biotechnology and computer technology both constrain how we can ‘process’ a
business model. (Processing currently means ‘see’—we do not touch or hear business
models, let alone taste or smell them.) Computer technology constrains our visual ‘inter-
face’ to two dimensions. The ‘inputs’ we receive from a computer system, whether on a
screen or a print-out, are two-dimensional. The biotechnology of human eyes’ retinas is
also constrained to two-dimensional images. Furthermore, human brains are trained to
process the kind of information in business models on two-dimensional surfaces.

From a practical point of view, this means that the sensible solution is to construct and
review the multi-dimensional business model through two-dimensional views. Digestible
two-dimensional chunks are an easy and effective way for the human brain to absorb
the model. And its multi-dimensionality is not affected.

This solution can give computer technology an important role. Business models are
static—in both traditional and object modelling; they map the time dimension onto the
spatial dimensions. This means that the business model is not itself an information
processing system; it is only stored information—data. However, producing a two-
dimensional view of a multi-dimensional business model does take processing. So, at
least in theory, we need the power of a computer to store the multi-dimensional model
and produce the two-dimensional views.

In practice, using a computer with good CASE tool software can make the administra-
tion of storing the model and the processing of views easier, but it is not essential. I
have found that constructing a multi-dimensional business model from two-dimensional
paper views (in other words, using paper and ink technology) is a practical option—par-
ticularly when working with small models. The vital decisions about the construction and
review of the business model happen in the brain of the business modeller, which is not
excessively hampered by a paper model.

This is just as well because CASE tool software is not yet fully geared up for business
object modelling. At a more mundane level, I have found a computer graphics package
an invaluable aid to producing the paper views; the results are much more legible than
hand-drawn ones. While computers are not essential at the business modelling stage, it
is a different story when the model is turned into a working system. Then, computer
technology becomes essential.

2 Constructing signs for individual objects

Let’s now look at the two-dimensional notation. In object semantics, an individual object
is a plain and simple extension. This is referred to (directly mapped onto) by a sign in

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
188 Chapter 9 Constructing Signs for Business Objects

the model. We use different signs for the different types of
individual objects:

• Individual body, and
• Individual event.

2.1 Constructing a sign for an individual body

The sign for an individual body is constructed out of two components. A body sign,
which is a rectangle, and a name sign that is the name of the body. We put the name
sign inside the body sign (shown in Figure 9.1). This figure also diagrams the extra-
model reference link between the individual body sign in the model and the body object
in the domain.

Figure 9.1:
Individual body
sign

Sometimes, to aid recognition, we include an icon of the individual body inside the body
sign (shown in Figure 9.2).

Figure 9.2:
Alternative indi-
vidual body sign

r
e
fe

r
s

t
o

MY CARMY CAR

Individual Body
Name Sign

Composite
Individual
Body Sign

Body
Component Sign

+ =

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

C
O

M
P

O
N

E
N

T
S
IG

N
S

D
O

M
A

IN

r
e
fe

r
s

t
o

Individual
Body Name
Component

Composite
Individual
Body Sign

Component
Body Sign

Individual
Body Icon

Component

MY CAR

MY CAR

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

C
O

M
P

O
N

E
N

T
S
IG

N
S

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 189

2.2 Constructing a sign for an individual event

We construct the sign for an individual event in a similar way out of two components. An
event sign, which is an ellipse, and a name sign, which is the name of the event. We
again put the name sign inside the event sign (shown in Figure 9.3).

Figure 9.3:
Individual event
sign

2.3 Constructing individual object name sign components

The shape of the component body and event signs show their type; so, all signs of the
same shape are the same type. We use everyday language for the name components.
These differentiate between signs for different objects. They help us recognise which
object a particular composite sign refers to. To avoid confusion, a convention, within
each model, indicates that the name signs are unique; no two individual objects have
the same name sign.

3 Constructing signs for classes of objects

We now look at how to construct the signs that refer to classes. We also look at the
signs for the class pattern’s two important tuples connecting classes:

• Class–member, and
• Super–sub-class.

3.1 Constructing a sign for a class of individual objects

We first look at how to construct a sign for a class of individual objects. Just as there are
different signs for an individual body and an individual event, there are different signs for
a class of individual bodies and a class of individual events.

Individual Event
Name Sign

Composite
Individual
Event Sign

Event
Component Sign

r
e
fe

r
s

t
o

ACCIDENT ON
25/5/95

ACCIDENT ON
25/5/95+

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

C
O

M
P

O
N

E
N

T
S
IG

N
S

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
190 Chapter 9 Constructing Signs for Business Objects

3.1.1 Constructing a sign for a class of individual events

Remember that we construct a class of individual objects by collecting together the
extensions of those objects and treating the collection as a single object. This single
object is what the class sign refers to.

 A class of individual events only contains events, so we use the same elliptical event
sign as a component. We put the name of the class in this ellipse. We then indicate that
we have constructed the event class out of individual events by putting two smaller
superimposed ellipses—signs for the member events—in the bottom right corner. Fig-
ure 9.4 gives an example. In this example, we have also put the name sign for a mem-
ber of the class, ‘accidents’, in the smaller ellipse. Often, however, a member name sign
takes up too much space and we have to leave it out.

Figure 9.4:
A class of individ-
ual events sign

3.1.2 Constructing a sign for a class of individual bodies

The sign for a class of individual bodies follows the same pattern. We use the same rec-
tangular box sign that we used for individual body signs and show the class has mem-
bers using two smaller superimposed rectangular boxes in the bottom right corner.
Again we name the class and, if there is enough space, the potential members. The
name sign for the class is in the larger class rectangle and the name sign for a member
of the class is in the smaller member rectangles (shown in Figure 9.5).

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

ACCIDENTS

ACCIDENT ACCIDENT

ACCIDENT

Composite
Class Of

Individual
Events Sign

Member
Name Sign

Composite Event
Members Sign

Event Members
Component Sign

Event Class
Name Sign

Event
Component Sign

+

+ +

=

C
O

M
P

O
N

E
N

T
S
IG

N
S

ACCIDENTS

ACCIDENTS

ACCIDENT

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 191

Figure 9.5:
A class of individ-
ual bodies sign

3.1.3 Constructing class name and member name sign components

We use class names, as we used individual object names, to differentiate the signs (and
so identify the classes). As before, we keep the names unique within each model.
Unlike some notations, we use different names for a class and its members. These
other notations, will, for example, call both the cars class and its individual members
‘car’. I have found that this causes confusion. In object semantics, a clear distinction is
made between the class and its members. In object syntax, this is reflected in different
names for the class and its members— often, as here, the plural and singular forms of a
noun. Using the car example, the class is called (and so the class name sign is) ‘cars’
and an individual member is called a ‘car’.

3.2 Constructing a sign for a class–member tuple

Individual objects (whether bodies or events) that are members of a class belong to that
class; that is, there is a class–member tuple connecting each member object and the
class. This tuple is central to the notion of a class, so we need to have a sign for it in our
notation.

3.2.1 Classes and members

The class–member tuple is, strictly speaking, a couple <individual object, class> that
belongs to the class–member tuples class. We model it by drawing a class–member
tuple sign. This is a dashed line joining the relevant class and member signs. It has, at
the member end, a semi-circle with a line through it (shown in Figure 9.6). This is
intended to look like the Greek character epsilon ‘Î’—the mathematical sign for class

Member
Name Sign

Bodies Class
Name Sign

Composite
Body Members

Sign

Body Members
Component Sign

Composite
Bodies Class

Sign

Component
Body Sign IN

F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

CARS

 CAR

 CAR

 CAR

+ +

+ =
C

O
M

P
O

N
E
N

T
S
IG

N
S

CARS

 CAR

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
192 Chapter 9 Constructing Signs for Business Objects

membership. We show that the connection is a tuple by putting a black diamond, the
sign for a tuple, on the line.

Figure 9.6:
Class–member
tuple sign

Figure 9.7:
Multiple class–
member tuple
signs

As you can see from the figure, we use the same class–member tuple sign for body and
event classes. This is understandable because the underlying pattern is the same.
There is also an informal convention (followed in Figure 9.6) that we draw classes
higher up the page than their members; though in some complicated diagrams, it is not
possible to do this.

3.2.1.1 Members of more than one class

Unlike some notations, this can easily model an object that is a member of more than
one class—what we called multiple classification. We just join the object’s sign to each
of the relevant class signs with class–member tuple signs (shown in Figure 9.7).

MY CAR

CARS

CAR

BODY EXAMPLE EVENT EXAMPLE

ACCIDENTS

ACCIDENT

ACCIDENT ON
25/5/95

Composite
Class-Member
Tuple Sign Tuple

Component
Sign

Class-Member Tuple
Component Sign

MY CAR

MY THINGS

MY
THING

Multiple Class-Member
Tuples CARS

CAR

r
e
fe

r
s

t
o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

MY
THINGS

r
e
fe

r
s

t
o

CARS

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 193

3.2.1.2 An accurate class–member sign pattern

The class–member pattern is a very strong pattern; one that is central to object seman-
tics. So is its reflection in the information model, the class–member sign pattern.
Because one is a reflection of the other, they have similar patterns. However, a common
mistake is to assume they have the same pattern. This is not so. The information
model’s ‘ignorance’ leads to differences. We look at one of these now.

It is natural and normal to assume a class has members. A class is a class because it
captures some common patterns of its members; so, it is reasonable to assume it has
members. Because a class sign’s purpose is to model a class, it also appears reasona-
ble to assume that it will reflect this characteristic—to think that a class sign is always
linked to some member signs (sometimes called instances).

But this is wrong—it turns out that it is natural and normal in an information system for a
class sign to have no member signs. In fact, it is quite common. For example, we talk
about types of wild animals without having any notion of a particular animal. We talk
about elephants (the class elephants) or gorillas (the class gorillas) without ever know-
ing a particular elephant or gorilla (members of the classes elephants and gorillas). Our
minds, as information systems, have no member signs for the class signs we are using.

Member sign-less (instanceless) class signs are an almost universal rule in the shipped
versions of business computer system packages. For example, accounting packages
are usually shipped with a transactions file (a class sign) that has no individual transac-
tions (in object terms, member signs)—the situation shown in Figure 9.8.

Figure 9.8:
The instanceless
transactions class
sign

3.2.2 Modelling lack of membership information

No information system is completely ‘informed’. This includes human minds, which are
considered information systems. We now illustrate this with two types of ignorance that
arise when modelling the class–member pattern:

• Unknown members, and

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

TRANSACTIONS

r
e
fe

r
s

t
o

TRANSACTIONS

TRANSACTION

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
194 Chapter 9 Constructing Signs for Business Objects

• Unknown membership.

Figure 9.9:
Known and
unknown class–
members

3.2.2.1 Modelling unknown members

For every class in an information system, when we look at it objectively from outside the
system, we can divide its members into known and unknown. Known if the information
system has a sign for them; otherwise, unknown (or, more accurately, unknown by the
information system but known by us—otherwise, we could know that they were
unknown). This distinction has nothing to do with the class or its members. It is a feature
of the information model (shown in Figure 9.9.)

It is common for a member to be unknown because it has not yet come into existence.
When it does, the information system can then construct a sign for it. This happens, for
instance, when a new country is created. It happened recently for the Czech Republic
and Slovakia; ten years before they were created, no-one would have known about
these two countries. But when Czechoslovakia decided to separate into two countries,
people began to become aware of them. The extension of the class countries in the real
world did not change. All that changed was the construction of new signs for the Czech
Republic and Slovakia in information systems.

3.2.2.2 Modelling unknown class membership

It is important to remember that, not only do signs have to be constructed in the system
for the class’s members, but also for the class–member tuples connecting members to
the class. Our minds automatically and unconsciously supply this link; so, it is easy to
forget that it needs to be explicitly constructed. We can illustrate this with an example
where the system starts off knowing about the member of a class but not its member-
ship of the class.

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

KNOWN

UNKNOWN

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

? ?JOHN'S CARMY CAR

CARS

r
e
fe

r
s

t
o

CARS

 CAR

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 195

Figure 9.10:
Jeeves the butler
as an unknown
member of the
class murderers

Consider an Agatha Christie type of detective novel, in which a murder has been com-
mitted in a country house. At the beginning of the novel, we are introduced to each of
the characters; the butler, the lord of the manor, the chambermaid, and so on. We know
that, by convention, one of these is the murderer. Assume that Jeeves the butler is the
murderer—in other words, a member of the class of murderers. Now, when we start
reading the book we know Jeeves and know the class murderers, but have not (yet)
found out that Jeeves is a member of the class murderers. Figure 9.10 shows the state
of our knowledge.

Figure 9.11:
Jeeves the butler
as a known mem-
ber of the class
murderers

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

JACK THE
RIPPER

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

JEEVES

MURDERERS

r
e
fe

r
s

t
o

MURDERERS

MURDERER

BUTLERS

r
e
fe

r
s

t
o

BUTLERS

BUTLER

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

JACK THE
RIPPER

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

JEEVES

MURDERERS

r
e
fe

r
s

t
o

MURDERERS

MURDERER

BUTLERS

r
e
fe

r
s

t
o

BUTLERS

BUTLER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
196 Chapter 9 Constructing Signs for Business Objects

At some stage, as the plot unfolds, we realise the butler is the murderer. As we already
have signs for the butler and the class murderers, all we need to do is construct the
class–member tuple sign between the two. The result is shown in Figure 9.11. Notice
that there is no change in the domain. The butler belonged to the class murderers all
along, what happens when we solve the mystery is that we learn of his membership.

3.2.2.3 The constructive nature of modelling

This and the previous example of ‘ignorance’ have highlighted what might be called the
constructive nature of signs and so information. Signs only exist if we construct them.
This is obvious when we start to think about it. How could a sign exist that has not been
constructed? We shall see, as we work through this chapter, the fundamental impact
this constructive nature has on information modelling.

3.2.3 Classes as members of classes

So far we have only considered classes of individual objects. However, we recognised
in the logical paradigm that classes were objects and so could, like individual objects,
be collected together into classes—giving us classes of classes objects. This means
that the class–member tuple, with its <class, member> format, can have any type of
object (individual, class or tuple) in its member place. We now look at how we sign the
class-member pattern for classes of classes, and, in the process, see how we capture
class–member hierarchy patterns in the model.

Figure 9.12:
Car types—an
example of a
class–member
hierarchy

3.2.3.1 Class–member hierarchy

The sign for describing a class as a member of a class is exactly the same as that for
describing an individual object as a member of a class. The example shown in Figure
9.12 is taken from our original example of classes of classes in Chapter 6 (illustrated by
Figures 6.8 and 6.9). As we can see, the class–member sign is used in the same way
for members that are classes as for members that are individual objects. Figure 9.12 is
also an example of how we model a simple class–member hierarchy.

CAR TYPES

CAR TYPE

MINIS

MINI

MY CAR

CLASS OF
CLASSES
OBJECT

CLASS
OBJECT

INDIVIDUAL
OBJECT

CLASS-
MEMBER

HIERARCHY

Invalid
Class-Member
Inheritance{

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 197

3.2.3.2 Class membership inheritance

We shall see later on that various patterns are inherited down (and sometimes up) the
different hierarchies. However class membership is not one of these. It is inherited nei-
ther up nor down the class–member hierarchy. Consider my car in Figure 9.12. It is a
member of the class minis, which is itself a member of the class car types. But this does
not imply that my car is automatically a member of the class car types. In fact, as
shown, it is not a member.

This should not be surprising. Classes capture patterns by collecting together similar
objects. It is unlikely that a collection of similar classes, such as car types, would share
their car type pattern with their members. For example, that my car (a member of minis)
would behave like a car type.

3.2.3.3 Ban on circularity

Because we construct classes from extensions, we cannot construct a class with itself
as a member. Furthermore, we cannot construct a class that is a member of a class
lower down the class–member hierarchy. The impossible situation is shown in Figure
9.13. We recognise this impossibility in the information model. We do not allow class
signs to be instances of class signs lower down the class–member sign hierarchy.

Figure 9.13:
Impossible circular
class–member
hierarchy

It is the nature of our understanding of space (and time and space-time) that makes this
circularity impossible. This can be shown using the reference diagram in Figure 9.14.

3.3 Constructing a sign for a super–sub-class tuple

We have just looked at the signs for capturing the class–member patterns. However,
this is only one of class’s two main structural patterns. The super–sub-class connection
is the other. We now look at the signs for this second main structural pattern. Together
these two provide a framework that helps give classes their enormous power.

3.3.1 The super–sub-class pattern

The super–sub-class pattern resembles a whole–part pattern for classes. It is about
classes containing other classes. For example, horses are animals—or, in class-speak,

CAR TYPES

CAR TYPE

MINIS

MINI

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
198 Chapter 9 Constructing Signs for Business Objects

the class horses is a sub-class of (is contained in) the class animals. This containment
or sub-class connection is between the super-class and the sub-class. Strictly speaking,
it is the couple <super-class, sub-class> that belongs to the super–sub-class tuples
class.

Figure 9.14:
Impossible circular
class–member
hierarchy refer-
ence diagram

3.3.1.1 Super–sub-class sign

We model this super–sub-class pattern with a sign. It consists of a line joining the two
relevant class signs with a semi-circle at the sub-class end. This is intended to look like
the mathematical notation for sub-class—‘É’. Because it reflects a tuple, it also has a
black diamond tuple sign on the line. As we can see from Figure 9.15, the same sign is
used for body and event classes. There is no need for different signs because the con-
nections have the same pattern.

Figure 9.15:
Super–sub-class
tuple sign

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

MINIS

CAR TYPES

CAR TYPES

CAR TYPE

MINIS

MINI

CAR TYPES

MINIS

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

ANIMALS

ANIMAL

HORSES

HORSE

SERIOUS
ACCIDENTS

SERIOUS
ACCIDENT

Composite
Super-Sub-Class Tuple
Sign

Tuple
Component

Sign

Super-Sub-Class
Tuple Component Sign

BODY EXAMPLE EVENT EXAMPLE

ACCIDENTS

ACCIDENT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 199

3.3.2 Super–sub-class hierarchies

Typically, in a business model, classes are linked into a lattice hierarchy of super- and
sub-classes. As we saw, when looking at the logical paradigm in Chapter 6 (see Figure
6.3), a tree hierarchy is too constraining to provide an undistorted reflection of reality.

Figure 9.16:
Natural super–
sub-class hierar-
chy structure

3.3.2.1 Natural super–sub-class hierarchy structure

In this lattice hierarchy, a super-class may have multiple sub-classes and a sub-class
may have multiple super-classes. For instance, the schema in Figure 9.16 models the
super-class animals as having the sub-classes, mammals and male animals. It models
the class stallions as having the classes horses and male animals as its super-classes.

When I construct a model of a super–sub-class hierarchy like this, I tend to automati-
cally order the classes into a structure like the one in Figure 9.16. As you can see, this
follows an informal convention whereby super-classes are higher up the page than their
sub-classes (though I find that in some complicated hierarchies it is not possible to do
this).

3.3.2.2 Modelling descendant–sub-classes

The natural structure in Figure 9.16 subtly ignores the fact that the super–sub-class
tuple can be inherited. The class stallions is a sub-class of the class horses and so con-
tained in it. The class horses is a sub-class of the class mammals, which is a sub-class
of the class animals. So, the class stallions is contained in the class animals. This
means that we can, if we wish, recognise it as a sub-class and construct a sub-class
sign in the model linking them.

Though we may need to do this for some classes, it is not a good idea to do it for all of
them in a single schema. Why is this? Consider what the model for our simple example
would look like if we included signs for all the possible sub-class tuples.

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
200 Chapter 9 Constructing Signs for Business Objects

Figure 9.17 illustrates the problem—the hierarchy becomes cluttered. If the super–sub-
class hierarchy were larger, the problem would be worse because the number of poten-
tial sub-class tuples would increase dramatically. Modelling all these possible sub-class
tuples would result in an impossibly cluttered schema.

Figure 9.17:
All possible sub-
class tuples

Figure 9.17 also, quite usefully, distinguishes between two types of sub-class tuples;
child and descendant. The stallions-to-horses tuple is a child–sub-class tuple because
there are no intermediate sub-classes explicitly modelled. On the other hand, the stal-
lions-to-animals tuple is a descendant–sub-class tuple because the sub-classes, mam-
mals and horses, are explicitly modelled as intermediate sub-classes. The sub-class
sign we have been using until now is really the sign for the child–sub-class tuple. The
descendant–sub-class tuple sign is a modified version of it, with an additional zigzag in
its line (as shown in Figure 9.17).

3.3.2.3 Deducing descendant–sub-class signs

Descendant–sub-class tuples logically depend on child–sub-class tuples, because we
can ‘logically’ construct their signs from the signs for the child–sub-class tuples. More
generally, we can logically deduce the sign for a descendant–sub-class tuple from a
combination of sub-class tuples. This deduction has the following pattern:

A is a sub-class of B
B is a sub-class of C
C is a sub-class of D
D is a sub-class of E
Therefore:A is a descendant–sub-class of E

Where there can be any number of sub-class lines (except zero and one of course).

This is not a new logical deduction pattern. It is the same as one of Aristotle’s syllo-
gisms—one that looks like this:

All Spartans are humans,
All humans are animals,
So all Spartans are animals.

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

Child-Sub-Class
Tuple

Descendant-
Sub-Class

Tuples

Composite
Descendant-Sub-
Class Tuple Sign

Descendant-
Sub-Class Tuple

Component
Sign

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 201

It might be easier to see the resemblance when the syllogism is translated into class-
speak—as below:

The class Spartans is a sub-class of the class humans,
The class humans is a sub-class of the class animals,
So the class Spartans is a descendant–sub-class of the class animals.

Figure 9.18 shows this descendant calculation graphically.

Figure 9.18:
Descendant–sub-
class calculations

3.3.2.4 Virtual descendant–sub-class signs

This descendant deduction pattern provides an opportunity to tidy up the sub-class clut-
ter problem. The descendant signs can be virtual, calculated as required. As we dis-
cussed in Chapter 2 , there is no reason why processes in the information system
cannot represent business objects. This gives us the benefit of having signs for all the
descendant–sub-class tuples without having to bear the cost of storing them—a signifi-
cant compacting.

The power of computing makes this ‘virtual’ strategy more reliable. In a paper and ink
environment, the information processor that deduces the descendant tuple signs is our
minds. They are not particularly reliable processors, particularly of these sorts of logical
calculations. However, in computer processing, we have a reliable logical processor. It
can accurately and consistently calculate the signs.

I normally adopt a strategy of making most descendant–sub-class signs virtual. I con-
struct views of the business model that only show the signs for child–sub-class tuples
and those descendant–sub-class tuples that are essential. I make the signs for the
other descendant–sub-class tuples virtual. This reduces the clutter in even the most
complicated super–sub-class hierarchy to an easily manageable level.

ANIMALS

ANIMAL

ANIMALS

ANIMAL

HUMANS

HUMAN

HUMANS

HUMAN

SPARTANS

SPARTAN

SPARTANS

SPARTAN

BEFORE AFTER

Calculated
Descendant-
Sub-Class
Tuple

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
202 Chapter 9 Constructing Signs for Business Objects

3.3.2.5 Non-circular super–sub-class hierarchy structure

There is a logical constraint upon the super–sub-class hierarchy. Like the earlier class–
member hierarchy, it cannot be circular. For example, animals from Figure 9.18 cannot
be a sub-class of Spartans, as (falsely) indicated in Figure 9.19. Because classes are
built up out of extensions, it is impossible for any circularity to exist. A class, such as
animals, cannot even potentially, be a sub-class of itself—in other words, contained in
itself.

Figure 9.19:
Impossible circular
super–sub-class
hierarchy

Like the class–member hierarchy, it is the nature of our understanding of space and
time (and space-time) that makes this circularity impossible. This is shown by the refer-
ence diagram in Figure 9.20. Normally, we illustrate the super–sub-class structure by
having one class contained in another. However, as the figure shows, this will not work
for a circular structure; instead, we show the sub-class connection using an arrow.

Figure 9.20:
Impossible circular
super–sub-class
reference diagram

SPARTANS

SPARTAN

ANIMALS

ANIMAL

HUMANS

HUMAN

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

ANIMALS

r
e
fe

r
s

t
o

ANIMALS

ANIMAL

HUMANS

SPARTANS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 203

3.3.2.6 Inheriting class membership

As we would expect, the patterns for classes are webby; in other words, the patterns for
super–sub-class and class–member intertwine. One pattern is particularly important; it
is the inheritance of class membership up the super–sub-class hierarchy.

To see how this works, we introduce Trigger the horse into the model in Figure 9.21.
We naturally tend to make him a member of the class stallions (shown in Figure 9.21).
Stallions is the hierarchy’s lowest class. However, Trigger is potentially a member of all
the hierarchy’s higher classes, but our natural instinct is not to model these possibilities.

Figure 9.21:
Natural position
for Trigger the
horse

Why don’t we model these potential higher class–member tuples? We had a similar sit-
uation to this earlier with child– and descendant–sub-classes. And the answer is the
same here—they would clutter up the schema and the model. We can see this in Fig-
ure 9.22, which shows the results of constructing all the class–member tuples for our
example. The model is pretty cluttered and this is only a small hierarchy. A much larger
hierarchy would be impossibly cluttered. We have a class–member, as well as a sub-
class, clutter problem.

Figure 9.22 also illustrates a distinction between the sign for the lowest class–member
tuple—now called the nearest-class–member sign—and the sign for other class–mem-
ber tuples—now called distant-class–member signs. The distant-class–member signs
use the same zigzag component sign as the earlier descendant–sub-class signs. Trig-
ger’s nearest class is stallions because there is no class below stallions in the super–
sub-class hierarchy to which he belongs; so, the class–member tuple is a nearest-
class–member tuple. Trigger is a distant-class–member of each of the classes horses,
mammals, male animals and animals because there is a class below them in the class–
member hierarchy, the class stallions, of which he is a member.

TRIGGER

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
204 Chapter 9 Constructing Signs for Business Objects

Figure 9.22:
All Trigger the
horse’s member
possible class–
member tuples

3.3.2.7 Deducing more distant-class–member signs

As with child–sub-class signs, we can deduce and construct distant-class–member
signs from the nearest-class–member sign. Like before, this is done logically, without
involving any analysis of what the signs refer to. The converse is, of course, not true.
We cannot work out a nearer class–member sign from a more distant sign. This makes
the nearest-class–member sign key; from it we can calculate all the distant-class–mem-
ber signs.

More generally we can construct a distant-class–member sign from the class–member
sign and a chain of super–sub-class signs up from its class sign. The deduction has the
following pattern;

A is a class–member of B
B is a sub-class of C
C is a sub-class of D
D is a sub-class of E
Therefore:A is a more distant-class–member of E

There can be any number of sub-class lines (except zero of course) in this calculation.

As with the earlier descendant–sub-class calculation pattern, this has the same pattern
as one Aristotle’s syllogisms (called barbara), which looks like this:

Socrates is a man,
All men are mortal,
So Socrates is mortal.

It is easier to see the resemblance when it is translated into class-speak—as below:

Nearest-
Class-Member

Tuple

Distant-
Class-Member
Tuples

TRIGGER

Composite
Distant-
Class-Member
Tuple Sign

Distant-
Class-Member

Tuple
Component

Sign

MALE
ANIMALS

MAMMALS

MAMMAL

HORSES

HORSE

STALLIONS

STALLION

ANIMALS

ANIMAL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Constructing signs for classes of objects 205

Socrates is a class–member of the class men,
The class men is a child–sub-class of the class mortals,
So Socrates is a more distant-class–member of the class mortals.

The distant calculation for Aristotle’s syllogism is shown in Figure 9.23.

Figure 9.23:
Aristotle’s barbara
syllogism

People who have not yet developed a clear idea of the difference between the class–
member and super–sub-class patterns often see this distant-class–member calculation
process as the same as the earlier descendant–sub-class calculation process. When
they develop a clear understanding of the differences between the two patterns, they
then begin to see the differences between, as well as the similarities in, the two proc-
esses.

3.3.2.8 Compact class–member hierarchy models

The distant-class–member deduction pattern works in a similar way to the earlier
descendant–sub-class pattern. This provides us with an opportunity to use virtual signs
again and tidy up the class–member clutter problem. An opportunity to get the benefit of
having signs for all the descendant–sub-class tuples, without having to bear the cost of
visibly recording them. Once I model the nearest-class–member tuple, I can assume
that all the distant-class–member tuples also ‘virtually’ exist.

I can then adopt the strategy of only modelling the nearest-class–member tuples and
essential distant-class–member tuples. The signs for the many other distant-class–
member tuples are virtual. This can reduce the clutter in even the most complicated
class–member hierarchy to an easily manageable level.

MORTALS

MORTAL

MORTALS

MAN

MEN

MAN

MEN

MAN

Calculated
Distant-
Class-Member
Tuple

SOCRATESSOCRATES

BEFORE AFTER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
206 Chapter 9 Constructing Signs for Business Objects

3.3.3 Super–sub-class tuples class

We naturally see the super–sub-class tuple as connecting classes. This is correct in
one sense, the tuple can only connect classes. But, it does not mean the super–sub-
class sign only connects class signs. If a class sign refers to a class of classes, then its
member component refers to the member classes. Because these are classes they can
be connected with their sub-class signs using the super–sub-class sign. Furthermore,
because the member component sign refers to a class of members, the super–sub-
class sign refers to a class of super–sub-class tuples.

Here is an example. Consider the Linnaean biological scheme used to classify individu-
als into species and species into genera (singular—genus). This two-level structure is
reflected in the Linnaean names for species. For instance, our species is homo sapiens
where homo is the genus and sapiens the species within genus. This gives us an exam-
ple of a super–sub-class tuple class between classes’ members.

At the classes of classes level we have two classes; genera and species. The class
genera has individual genus classes, such as homo as members. The class species
has individual specie classes, such as homo sapiens as members. At the classes of
individual objects level, we also have two classes; homo and homo sapiens. The class
homo sapiens is a sub-class of the class homo as shown in Figure 9.24. This particular
super–sub-class pattern is just a particular example of a more general pattern. The
members of the class species are sub-classes of the members of the class genera. This
is a super–sub-class tuples class between the classes’ members. Because it refers to
all the different individual tuples between the various members, it is a class of tuples not
an individual tuple. This is reflected in its sign, which uses a tuples icon instead of a
tuple icon (shown in Figure 9.24).

Figure 9.24:
The super–sub-
class tuples class
sign

4 Constructing signs for tuples

We have finished looking at the notation for classes, an object with internal structure
resulting from its construction from other objects. We now look at another constructed
object with internal structure, the tuple object.

HOMO

HOMO
SAPIENS

SPECIES

SPECIE

GENERA

GENUS

Composite
Super-Sub-Class
Tuples Sign

Tuples
Class

Component
Sign

Super-Sub-Class Tuple
Component Sign

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Constructing signs for tuples 207

Figure 9.25:
Tuple and tuple
class signs

4.1 Constructing a tuple of individual objects and a tuples class

For our purposes, tuples exist with an associated tuples class. So we model the sen-
tence ‘Prince Charles is the father of Prince William’ with a tuple and a tuples class
(shown in Figure 9.25).

Note these points:
• The solid black diamond is the component sign for the tuple.
• The connecting lines from the tuple component sign to other signs are

called tuple place component signs.
• The tuple place component signs connect the sign for the tuple with the

signs for the objects out of which it is constructed. These are called the
tuple place objects. In the Prince Charles—Prince William tuple, the places
are occupied by individual objects, but they could be occupied by any type
of object.

• The component sign for a tuples class is two hollow diamonds, one inside
the other.

• The lines from the component tuples class sign are called the (tuples) class
place component signs.

• The father–child tuples class is a class object and so uses the standard
class–member sign to link to its member tuple sign.

4.1.1 Occupied class place signs

A (tuples) class place is said to be occupied when its tuples class sign is connected to
another object. For instance, the fathers class is connected to the father–child tuples
class in Figure 9.26. This occupation is signed by adding the component tuple sign, a
solid black diamond, to the (tuples) class place component sign. The object to which the
tuples class is connected is called a (tuples) class place object, an example is the
fathers class in Figure 9.26. Notice that the ‘is a child of’ class place sign in Figure 9.26
does not have a black diamond component because it is not occupied.

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

PRINCE
CHARLES

PRINCE
WILLIAM

PRINCE
CHARLES

PRINCE
WILLIAM

Composite
Tuples
Class
Sign

FATHER-CHILD
TUPLES

Composite
Tuple
Sign

Component
Tuple Place

Signs

is the father of f o dli hc eht si

PRINCE CHARLES-
PRINCE WILLIAM TUPLE

r
e
fe

r
s

t
o

FATHER-CHILD
TUPLES

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
208 Chapter 9 Constructing Signs for Business Objects

Figure 9.26:
Class place con-
straints on tuple
places

4.1.2 Occupied class place constraints on tuple places

A class place object constrains which tuples can be members of its tuples class. In the
example in Figure 9.26, the fathers class is a place object, which implies the existence
of a fathers tuple place in the tuple members of the tuples class. In simpler language,
this means that one of the places of each tuple member of the tuples class is desig-
nated a father tuple place and must be occupied by a member of the father's class.

In the example illustrated in Figure 9.26, the first place in the couple is designated the
father couple place. This means that a couple with Prince Charles in its first place
(<Prince Charles, ?>) can be a member of the father-child tuples class because Prince
Charles is a member of the class fathers. But any couple with the format <Prince Wil-
liam, ?> cannot be a member, because Prince William is not a member of the fathers
class.

Figure 9.27:
Convention for
reading tuple
names

4.1.3 Tuple and tuples class names

Tuples classes have names in the same way as other classes. However, in addition,
both tuples and tuples classes have a name constructed from the names on their class
place signs. The convention for constructing these names is that one of the class place
signs is picked and then a mental walk is taken along the class place (or place) sign to

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

 is a father of

f o dli hc a si

PRINCE
CHARLES

PRINCE
WILLIAM

Fathers Class
Tuple Places

CLASS

MEMBER

Tuples Class
Place Object

Composite
Tuples

Class Sign

Occupied
Tuples Class Place
Component Sign

FATHER-CHILD
TUPLES

FATHER-CHILD
TUPLES

r
e
fe

r
s

t
o

FATHERS

FATHERS

FATHER

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Constructing signs for tuples 209

the tuples class (or tuple) sign reading the text on the left and then along to the next
class place (or place) sign.

In the example in Figure 9.27, there are two ‘walks’. We can start at the father member
sign, and mentally walk past the father–child tuples to the child member sign, reading
the ‘is the father of’ text on the left. This gives us the name ‘father—is the father of—
child’. Mentally walking the other way, from child to father, would give us the name
‘child—is child of—father’.

4.2 Tuples classes inheriting patterns from classes

We can now begin to take advantage of the power that re-using patterns brings. We can
re-use the class pattern on tuples classes. As we have just seen, they are classes—in
class-speak; they are a sub-class of the class classes. So they inherit all the character-
istics of a class and share all its patterns. For instance:

• They have tuple super–sub-class and tuple class–member hierarchies.
• They have child– and descendant–sub-tuples-classes.
• They have nearest– and distant– class–member tuples.

They will also automatically inherit any new class patterns we construct (for example,
the distinct and overlapping patterns we examine in the next chapter). Tuples classes
inherit all this as the result of being a class object. We now look at an example of a class
pattern being re-used for tuples classes, the tuple super–sub-class hierarchies.

4.2.1 Tuple super–sub-class hierarchies

As tuples classes are classes they can also have super– and sub-classes. For instance,
parent–child tuples is a super-class of father–son tuples (shown in
Figure 9.28). Notice that the super–sub-class tuple uses the standard super–sub-class
tuple sign.

Figure 9.28:
Super–sub-tuple-
class sign

4.2.1.1 Modelling super-sub place classes

Care needs to be exercised when working out the super–sub-class tuples between the
place classes of tuple super- and sub-classes. This tends to come with practice. In par-
ticular, as one moves from a tuple subclass to a tuple supercools, the place classes

FATHERS

FATHER

PARENTS

PARENT

SONS

SON

CHILDREN

CHILD

is a father of

f o dli hc a si

is a parent of

f o nos a si

Composite Super-
Sub-
Tuples-
Class
Sign

PARENT-CHILD
TUPLES

Component
Sub-Tuples-

Class Sign

FATHER-SON
TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
210 Chapter 9 Constructing Signs for Business Objects

should either remain the same or move up to a super-class. This is easiest to explain
with an example.

Look at Figure 9.28, the father–son tuples class has as one of its class place objects,
the fathers class. Its super-class, parent–child tuples, has as its corresponding class
place object, the parents class. As parents is a super-class of fathers, we can go in a full
circle. Starting from father–son tuples we go along to fathers, up to parents, along to
parent–child tuples and back down to where we started, father–son tuples. This works
because place classes of a tuples super-class need to be either the same as or super-
classes of the corresponding place classes of their tuples sub-class.

For an example of incorrect modelling, look at Figure 9.29. We cannot trace a full circle
here because mothers is (rightly) not signed as a super-class of fathers. The problem
here is that mother–child tuples has been signed incorrectly as a super-class of father–
son tuples.

Figure 9.29:
Incorrect super–
sub-class tuple

5 Constructing signs for whole–part tuples

In Part Four, we noted how important whole–part tuples were to object semantics. This
is recognised in the notation by giving whole–part tuples their own sign. We look at it
now, along with the patterns of the underlying whole–part tuples that it is used to sign.
We noted, in Chapter , that the whole–part pattern is similar to the super–sub-class pat-
tern. Here we see more evidence of this.

5.1 What are whole–part tuples?

But first let us remind ourselves how whole–part tuples fit into the class framework.
Consider this example. My fingers are part of my hand. This means that there is a con-
nection between my fingers and my hand. Using the same analysis as we used for gen-
eral tuples above, this is a couple object <my fingers, my hand>, which is a member of
the whole–part tuples class. This analysis is shown in Figure 9.30. Because the whole–
part couple has its own sign, the whole–part tuples class sign and its class–member
sign are redundant. They are only included in this model to make absolutely clear what
the whole–part tuple is.

FATHERS

FATHER

MOTHERS

MOTHER

SONS

SON

CHILDREN

CHILD

is a father of

f o dli hc a si

is amother of

f o nos a si

MOTHER-CHILD
TUPLES

FATHER-SON
TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Constructing signs for whole–part tuples 211

Figure 9.30:
My fingers are part
of my hand

The composite whole–part sign is constructed from familiar components. Because the
couple is a tuple, we use a tuple sign for it. As we mentioned above, the whole–part and
the super–sub-class tuples are similar kinds of tuples, operating at different levels. So
they have the same composite sign. Until now, we have called this the sub-class sign,
but as we are generalising it across sub-class and whole–part, we rename it the sub-
part sign.

Figure 9.31:
Fingers are part of
hands

The example above is of particular individuals. There are also classes whose members
have whole–part patterns. We can extend the example to illustrate this. Fingers are
parts of hands—in class-speak; the individual members of the fingers class are parts of

NDAHYM

MY

F
IN

GER

MY
HAND

SUB-PART
TUPLES

MY
FINGER

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Sub-Part Tuple
Component Sign

Composite
Sub-Part
Tuple Sign

SUPER-SUB-CLASS
TUPLES

WHOLE-PART
TUPLES

s
u

p
e
r
flu

o
u

s
s
ig

n
s

MY
FINGER

MY
HAND

HANDS

HAND

FINGERS

FINGER

Composite
Sub-Part
Tuples Class
Sign

Sub-Part
Component Sign

SUB-PART
TUPLES

SUPER-SUB-CLASS
TUPLES

WHOLE-PART
TUPLES

HAND-FINGER
TUPLES

s
u

p
e
r
flu

o
u

s
s
ig

n
s

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
212 Chapter 9 Constructing Signs for Business Objects

the individual members of the hands class. How do we sign this whole–part tuple
between members of a class? We use the individual whole–part sign, but suitably
amended to show that it is the sign of a tuples class instead of a tuple – as shown in
Figure 9.31). Like the tuple level sign, the whole–part tuples class sign and its class–
member sign are superfluous because the hand–finger tuples is signed as a whole–part
tuples class.

5.2 Individuals whole–part tuple hierarchy

The individual whole–part tuples create an individual whole–part hierarchy. For
instance, my fingers are part of my hand, my hand is part of my arm, and my arm is part
of my body (shown in Figure 9.32). As we can see, this is, in many ways, a super–sub-
class hierarchy for individual objects.

Figure 9.32:
Individual whole–
part tuple hierar-
chy

5.3 Classes whole–part tuple hierarchy

Individual whole–part hierarchies can be generalised into whole–part tuples class hier-
archies. For instance, the individual whole–part hierarchy shown in Figure 9.32 can be
generalised to the class level (shown in Figure 9.33.)

Figure 9.33:
Whole–part tuple
class hierarchy

5.4 Child– and descendant–parts

Just as we drew a distinction between child– and descendant–sub-classes in the
super–sub-class hierarchy, we draw a corresponding distinction here between child–
and descendant–parts. To see this, we add all the potential whole–part tuples to the
model in Figure 9.32 (see the result shown in Figure 9.34).

A child–part is one that has no intervening parts (in the particular model being consid-
ered). Descendant–part tuples are ones with intervening parts. For example, in Figure
9.34, ‘my fingers are part of my hand’ is a child–part tuple. Whereas, as ‘my finger is
part of my arm’ is a descendant–part tuple because it has my hand as an intervening
part.

MY ARM MY HANDMY BODY MY FINGER

ARMS

ARM

BODIES

BODY

MY ARM

HANDS

HAND

MY HANDMY BODY

FINGERS

FINGER

MY FINGER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Constructing signs for whole–part tuples 213

Figure 9.34:
Child– and
descendant–part
tuples

5.5 Deducing descendant–part signs

Like descendant–sub-class tuples, a descendant–part tuples sign can be deduced from
the child–part tuple signs and more generally from whole–part tuple signs. This deduc-
tion has the same pattern as the descendant–sub-class deduction:

A is a whole–part of B
B is a whole–part of C
C is a whole–part of D
D is a whole–part of E
Therefore:A is a descendant–part of E

Where there can be any number of whole–part lines (except zero and one of course).
An actual example is:

My finger is a part of my hand, and
My hand is a part of my arm
ThenMy finger is a (descendant–) part of my arm.

Figure 9.35 shows this deduction graphically.

Figure 9.35:
Descendant–part
tuple deduction

Child-Part Tuple Signs

Descendant-Part
Tuple Signs

MY ARM MY HANDMY BODY MY FINGER

Calculated
Descendant-
Part Tuple

MY ARM MY ARM

MY HAND MY HAND

MY FINGER MY FINGER

BEFORE AFTER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
214 Chapter 9 Constructing Signs for Business Objects

6 Constructing signs for dynamic objects

So far we have been constructing signs for timeless objects. We now look at signs for
the time-bound dynamic objects described in Chapter 8 :

• the here event class,
• the now event class, and
• current couples.

Figure 9.36:
Sign for the ‘here’
event class

Figure 9.37:
Sign for the ‘now’
event class

r
e
fe

r
s

t
o

HERE

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

HERE

Dynamic Object
Component
Sign

Here Class Name
Component Sign

SYSTEM
OBJECT

HERE EVENT CLASS

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Dynamic Object
Component
Sign

Now Class Icon
Component Sign

Here
Object

SPACE-TIME

NOW CLASS

SYSTEM OBJECT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Constructing signs for dynamic objects 215

6.1 Constructing a sign for the ‘here’ event class

The here event class has as its single member an instantaneous time-slice of the sys-
tem object—a physical body. This member moves, like all the dynamic events, along the
time dimension with the system’s ‘consciousness’. The composite sign for the here
event class is a circle, the component sign for a dynamic object, with the name ‘HERE’
in it (shown in Figure 9.36).

6.2 Constructing a sign for the ‘now’ event class

The ‘now’ event class has as its single member the instant that contains the ‘here’ event
class’s member. It is signed using a circle containing a clock face – as shown in Figure
9.37.

6.3 Constructing a sign for a current tuple

We now construct the signs for the current tuples class and its members, current tuples.
However, the current tuples class sign is, to an extent, superfluous because any tuple
signed as current automatically belongs to the current tuples class. This is done using a
component dynamic circle sign (illustrated in Figure 9.38). As you can see, one of the
sign’s current tuple places is linked to the now event class, the other(s) to the object(s)
currently classified as current.

You can also see the current tuples class signed in Figure 9.38 as a tuples class with
the dynamic circle component sign around it.

Figure 9.38:
Sign for a current
tuple

CURRENT
TUPLES

JOHN'S
CAR

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Dynamic
Current Tuples
Composite
Sign

Dynamic
Current Tuple
Composite
Sign

SPACE-TIME

JOHN'S
CAR

CURRENT
TUPLES

NOW CLASS

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
216 Chapter 9 Constructing Signs for Business Objects

7 Signs as objects—modelling the model

Object semantics applies to signs in the model as well as the objects that are modelled.
According to object semantics, everything is an object with four-dimensional extension.
Even the signs in the model are objects—they are model objects. We can see this
clearly when we start modelling the model. This is not meta-modelling, this is more like
modelling x modelling or (modelling)2.

This (modelling)2 clarifies one aspect of modelling that people sometimes find confus-
ing. This is that the type of an object (for example, body or event), and the type of the
model object that models it, are often quite different. This confusion about types some-
times manifests itself as a belief that the distinction between data and process in infor-
mation systems (the signs in the model) reflects the distinction between objects and
events in the real world. This resolves itself into a belief that data reflects objects and
process reflects events. We discussed how mistaken this belief is in Chapter 2 .

7.1 A (modelling)2 model

Look at the (modelling)2 model in Figure 9.39. It models examples of the four major
types of signs in our object notation; the individual body and event objects and the bod-
ies and events classes. As the model shows, all these signs (model objects), are all indi-
vidual physical bodies, whatever they refer to—whether event, class or body.

Figure 9.39:
Modelling body
and event model
objects

The model object for my car is an individual body sign. This sign is, like the body object
it refers to, an individual body object in its own right. It has extension, it persists through
time—though maybe not for as long as the body object it refers to. Individual body signs
are the only type of model object where the model object and the object it refers to are
of the same type.

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

M
O

D
E
L

D
O

M
A

IN
(M

O
D

E
L
)
2

ACCIDENTS

r
e
fe

r
s

t
o

ACCIDENTS

ACCIDENT

ACCIDENT
ON 25/5/95

r
e
fe

r
s

t
o

MY CAR

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

CARS

r
e
fe

r
s

t
o

CARS

 CAR

MY CAR
SIGN

CARS
SIGN

ACCIDENTS
SIGN

ACCIDENT
ON 25/5/95

SIGN

MODEL
SIGNS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
8 What’s next 217

The individual event sign is, like the individual body sign, an individual body. It has
extension and it persists through time—it has spatial and temporal dimensions. How-
ever, the event model object, unlike the individual body object, is not of the same type
as the object it refers to. The ‘accident 25/5/95’ sign is a body object with temporal
extension; the accident it refers to is an event that does not persist through time.

Model class objects, like the model individual objects, are individual bodies and so dif-
ferent in type from the objects they refer to. The event and body class examples in Fig-
ure 9.39 illustrate how constructed objects with an internal structure, such as the two
class objects, are flattened out in the object model into individual physical body objects.
This (model)2 structure is illustrated in Figure 9.40.

Figure 9.40:
(Model)2 objects

8 What’s next

We have now looked at signs for all the major types of individual objects that we need to
business object model. We have got a feel for what they mean and how they work. We
are well on our way to being ready to start business modelling. In the following chapter,
we look at the syntax of business object patterns. We see how we can use the object
notation to model patterns of business objects.

ACCIDENT ON
25/5/95
SIGN

INDIVIDUAL
EVENT SIGNS

ACCIDENTS
SIGN

BODIES

MODEL
SIGNS

EVENT CLASS
SIGN

(M
O

D
E
L
)
2

MY CAR
SIGN

INDIVIDUAL
BODY SIGNS

CARS
SIGN

BODY CLASS
SIGNS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
218 Chapter 9 Constructing Signs for Business Objects

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 10
Constructing Signs for Business

Objects’ Patterns

1 Introduction

2 Patterns for the connections between extensions

3 State hierarchy patterns

4 Time ordered temporal patterns

5 Cardinality patterns for tuples classes

6 A pattern for compacting classes

7 Where we are

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
220 Chapter 10 Constructing Signs for Business Objects’ Patterns

1 Introduction
In the previous chapter, we saw how to construct signs for the basic types of objects in
object semantics. In this chapter, we step up a level. Instead of looking at individual
signs, we look at the syntax of signs that describe patterns of business objects. We
examine how this syntax works using the following examples of fundamental patterns
found in our investigations of object semantics in Part Four:

• Patterns for the connections between extensions,
• State hierarchy patterns,
• Time ordering patterns,
• Cardinality patterns for tuples classes, and
• Patterns for compacting classes.

2 Patterns for the connections between extensions

Extension is a central notion of logical and object semantics. Many of the patterns we
have analysed so far turn out to have structures based on it. For instance, the sub-part
tuple (the generalised whole–part and super–sub-class tuple) is based on the extension
of one of the related objects containing the other.

Closely related to sub-part tuples are two other patterns based on structural connec-
tions between extensions: the distinct and overlapping patterns. These two patterns
occur at two levels:

• The individual object level, and
• The class level.

This is similar to the sub-part pattern, which is the whole–part pattern at the individual
object level and the super–sub-class pattern at the class level. Let’s now investigate
these patterns, starting at the individual object level.

2.1 Individual object level patterns

At the individual object level, any number of individual objects can have the distinct or
overlapping pattern, but the pattern is at its simplest when only two objects are involved.
So we start by looking at pairs of distinct and overlapping objects then move onto larger
groups of objects. Finally, we examine the following associated patterns:

• Inheriting distinct and overlapping patterns,
• Known and unknown distinct and overlapping individual objects,
• Partition patterns for distinct individual objects,
• Intersection pattern for overlapping individual objects, and
• Fusion pattern for individual objects.

We also work out what objects the signs for distinct and overlapping individual patterns
refer to.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 221

2.1.1 Distinct pairs of individual objects

Two individual objects that do not have any spatio-temporal parts in common are dis-
tinct. For example, my car and me are distinct—no part of my car is also a part of me.
We model this distinct pattern with the sign shown in Figure 10.1.

Figure 10.1:
Distinct individual
objects sign

2.1.2 Overlapping pairs of individual objects

A pair of individual objects that have parts in common overlap. For example, the island
of Ireland and the country United Kingdom overlap; the country of Northern Ireland is a
part of both individual objects. We model this overlapping pattern with the sign shown in
Figure 10.2. (This and subsequent examples involving countries use our simple intui-
tive view of country objects. We re-engineer a more sophisticated view in Part Six’s
worked examples.)

Figure 10.2:
Overlapping indi-
vidual objects sign

2.1.3 Three main types of connection for pairs of individual objects

We have now looked at what are, from an extension point of view, the three main pat-
terns of connection between pairs of individual objects; distinct, overlapping and whole–
part. As illustrated by Figure 10.3, a pair of individual objects must fall under one of
these patterns. It could be argued that the whole–part pattern, where one individual

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

MY CARME

Composite
Distinct
Sign

Distinct
Component

Sign

Composite
Overlapping
Sign

Overlapping
Component

Sign

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

ISLAND OF
IRELAND

UNITED
KINGDOM

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
222 Chapter 10 Constructing Signs for Business Objects’ Patterns

object completely contains another, is an extreme case of overlapping. However, the
convention is to consider these as separate patterns with their own signs.

Figure 10.3:
Pattern for individ-
ual objects

2.1.4 Larger groups of individual objects

Groups of individual objects larger than two can have a variety of patterns of connec-
tion. All the individual objects can be distinct [as shown schematically in Figure 10.4
(a)]. Or they can all overlap [shown in Figure 10.4 (b)]. It is also possible that some will
be distinct and others will overlap. Furthermore, it is possible that even if every pair in a
group of individual objects overlap, the whole group will not overlap [shown schemati-
cally in Figure 10.4 (c)]. The same is not true for distinctness; if every pair is distinct,
then the whole group is distinct.

Figure 10.4:
Schemas for larger
numbers of indi-
vidual objects

2.1.5 Inheriting distinct and overlapping patterns

Distinct and overlapping patterns for individual objects are inherited in opposite direc-
tions along the whole–part hierarchy. Distinctness is inherited down the hierarchy. So,
as the United States and France are distinct, their parts—for example, Texas and Bor-
deaux—are also distinct. This is modelled in Figure 10.5. The model also shows NATO
and the EEC (which have the United States and France as parts) overlapping, proving
that distinctness is not inherited up the whole–part hierarchy.

DISTINCT PART OFOVERLAPPING

OBJECT B

OBJECT A

OBJECT A

OBJECT B

OBJECT A

OBJECT B

OBJECT COBJECT COBJECT C

OBJECT B OBJECT B OBJECT BOBJECT A OBJECT AOBJECT A

OBJECT A

OBJECT C

OBJECT BOBJECT A
OBJECT B

OBJECT C

OBJECT A OBJECT B

OBJECT C

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

(a) (b) (c)

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 223

Figure 10.5:
Inheriting distinct-
ness

Overlapping is inherited up the whole–part hierarchy. So, as London and the River
Thames overlap, any wholes of which they are parts also overlap. For instance, South-
East England and the River Thames and its tributaries overlap. Overlapping, however,
is not inherited down the hierarchy (illustrated by the distinct City of London and
Thames Estuary in the model in Figure 10.6).

Figure 10.6:
Inheriting overlap-
ping

This inheritance has implications for how we model. I have found it useful to push the
distinct connections as far up the whole–part hierarchy as they will go and the overlap-
ping connections as far down the hierarchy as they will go. This increases the number
of objects that can inherit the pattern and so automatically increases the functionality of
the model. It also compacts the model as it replaces a number of lower-level distinct
connections (higher-level overlapping connections) with a single connection.

2.1.6 Known and unknown distinct and overlapping patterns

As mentioned earlier, a pair of individual objects must either be distinct, overlap or one
part of the other. However, we do not always know which pattern holds and sometimes
cannot find out without considerable analysis. In many cases, it is not worth the effort of
finding out and we can leave the point unresolved. In this situation, we model our igno-

NATO EEC

FRANCE

BORDEAUX

UNITED
STATES

TEXAS

inherited

RIVER THAMES
AND ITS

TRIBUTARIES

SOUTH-EAST
ENGLAND

inherited

RIVER
THAMESLONDON

THAMES
ESTUARY

CITY OF
LONDON

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
224 Chapter 10 Constructing Signs for Business Objects’ Patterns

rance with a lack of signs.

A more subtle ignorance occurs when two individual objects are signed in the model as
overlapping, but appear distinct because no common part objects are signed. For
example, the model in Figure 10.2 signs the island of Ireland and the country, the
United Kingdom, as overlapping but does not contain an overlapped object that is a part
of the two objects. However, this does not imply that the objects are distinct, just that the
model does not ‘know’ any of the parts in the overlap.

2.1.7 The distinct and overlapping individual objects pattern objects

According to object semantics, we should be able to point to the objects referred to by a
model’s signs. None of the signs should refer to mysterious unknowable objects. This
raises the question of what objects the distinct and overlapping signs refer to. Take, for
example, the distinct sign in Figure 10.1. What object does this refer to?

The distinct and overlapping individual object signs work in a similar way to the individ-
ual whole–part sign and most other pattern signs. They refer to an object and its class. It
is tempting to suggest that as we talk about distinctness as a connection, that the dis-
tinct sign should, like the whole–part sign, refer to a tuple object. This will not work
because the distinct and overlapping patterns are, unlike the whole–part pattern, sym-
metric.

This means that saying ‘A is distinct from B’ is no different from saying ‘B is distinct from
A’. (Saying ‘my hand is part of my arm’ is different from ‘my arm is part of my hand’.)

We can see how this causes a problem with an example. Consider the distinct sign in
Figure 10.1. Assume that this refers to the tuple <me, my car>. The couple <me, my
car> is belongs to the distinct tuples class. We have no guarantee that the couple <my
car, me> also belongs to the distinct tuples class. This raises the decidedly contradic-
tory possibility of me being distinct from my car, while at the same time my car is not dis-
tinct from me.

Figure 10.7:
Individual object
examples of dis-
tinct and overlap-
ping pattern
objects

REAL WORLD

OVERLAPPING PATTERN OBJECT

OBJECT SCHEMA

UNITED
KINGDOM

ISLAND OF
IRELAND

OVERLAPPING
IRELAND/UK
OBJECT

OVERLAPPING
PATTERN
OBJECT

UNITED
KINGDOM

ISLAND OF
IRELAND

s
u

p
e
r
fl

o
u

s
s
ig

n
s

sign for
overlapping
individual

object

refers to

refers to

OVERLAPPING

DISTINCT
PATTERN OBJECT

ME

MY CAR

DISTINCT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 225

The distinct and overlapping objects are actually the classes of the distinct (or overlap-
ping) objects. In the example, the distinct object is the class {me, my car}. Our earlier
problem is resolved, because, unlike a tuple, members of a class are not ordered; {me,
my car} is the same class as {my car, me}. The distinct and overlapping pattern objects,
are then classes of classes—the class of distinct class objects and the class of overlap-
ping class objects. Examples of the two pattern objects are diagrammed in Figure 10.7.

2.1.8 Partitioning patterns for distinct individual objects

Distinct patterns, particularly useful distinct patterns, frequently arise from the partition
of an object into distinct parts. We find this a natural way of seeing. For instance, when
we see a person, we are almost instinctively already partitioning them—arms (hairy),
legs (long), face (round), etc. The partitioning objects are distinct parts of the whole
object and we can model this by combining the whole–part and distinct patterns into a
partition pattern. The sign for the composite pattern is shown in Figure 10.8. The com-
ponent whole–part tuple sign describes the whole–part element and the partition box,
the distinct element. Individual objects contained within the partition box are distinct.

Figure 10.8:
A partitioned indi-
vidual object

When we model, we often do not want to partition an individual object completely; we
only want to look at some of its parts. Then, we use a partial or incomplete partition. We
sign the incompleteness with a partial sign (a small flat rectangle) between the whole–
part sign and the partition box (shown in Figure 10.9).

Figure 10.9:
An incompletely
partitioned individ-
ual object

FRED

FRED'S
HEAD

FRED'S
TORSO

FRED'S
ARMS

FRED'S
LEGS

Superfluous
Distinct

Sign

Composite
Whole-Part
Partition
Sign

Whole-Part Tuple
Component

Sign

FRED

FRED'S
ARMS

FRED'S
LEGS

Composite Whole-Part
Incomplete Partition
Sign

Incomplete Partition
Component Sign

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
226 Chapter 10 Constructing Signs for Business Objects’ Patterns

2.1.9 Inheriting partition patterns

Individual object partitions are inherited down the whole–part hierarchy as the example
in Figure 10.10 shows. The partition of the United States into the Northern United
States and the Southern United States is inherited by the Western United States—giving
us the North-Western and South-Western United States.

Figure 10.10:
Individual object
partition inherit-
ance

As with distinct and overlapping inheritance, this has implications for how we model par-
titions. I have found it useful to push the partitions as far up the whole–part hierarchy as
they will go. This increases the number of objects that can inherit the pattern, and so
automatically increases the functionality. It also compacts the model, eliminating the
need for a number of lower level partitions.

Figure 10.11:
Intersected indi-
vidual object

2.1.10 Intersection pattern for overlapping individual objects

Sometimes we take two overlapping individual objects and recognise their overlapping
part as an object. This pattern is called an intersection and is signed in the model. In the

NORTHERN
UNITED
STATES

SOUTHERN
UNITED
STATES

UNITED
STATES

WESTERN
UNITED
STATES

NORTH
WESTERN
UNITED
STATES

SOUTH
WESTERN
UNITED
STATES

inherited
partition

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

ISLAND OF
IRELAND

UNITED
KINGDOM

Composite
Intersection
Sign

Intersection
Component

Sign

NORTHERN
IRELAND

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 227

example shown in Figure 10.11, we sign the intersection of the island Ireland and the
country, the United Kingdom, to give the country Northern Ireland.

The intersecting object, the country Northern Ireland, is logically dependant on the inter-
sected objects. This is signed in the model in two ways. First, this is shown by a logical
dependency component sign. This is a black semi-circle at the intersecting object end of
the composite intersection sign (shown in Figure 10.11). Second, Northern Ireland is
signed as derived with a grey triangle in the bottom left corner of the Northern Ireland
sign. This derived component sign is needed because, when the Northern Ireland sign
appears on a schema that does not have both the Ireland and the United Kingdom
signs, we cannot draw its intersection sign and so its logical dependency sign. Then, the
derived sign reminds us that it is logically dependent.

2.1.11 Fusion pattern for overlapping individual objects

Sometimes we construct a new object by fusing a number of overlapping individual
objects. The extension of the new object is the fusion of the extensions of the individual
objects. If the individual objects were distinct (as in Figure 10.10) then we would have a
partition pattern. Where they overlap, we have the potential for a fusion pattern. For
example, NATO and EEC overlap and so we can fuse them to get NATO & EEC. This is
the geographic area covered by countries that are members of both NATO and the
EEC. This fusion is recorded in the model in Figure 10.12 with a fusion sign. As with the
intersecting pattern, the fusion pattern creates a logical dependency. This is signed with
the same logical dependency and derived signs.

Figure 10.12:
Fusion sign

2.2 Class object level patterns

The distinct and overlapping patterns between extensions, which we have just exam-
ined for individual objects, appear again at the class level. Although, at that level, the
super–sub-class hierarchy plays the role of the whole–part hierarchy. We now analyse
the class level patterns in the same way as we analysed the individual object level ones.
Like before, we start with the simple patterns that hold between pairs of distinct and
overlapping classes before moving onto larger groups of classes.

We then examine a similar set of associated patterns:
• Inheriting distinct and overlapping class patterns,
• Known and unknown distinct and overlapping classes,
• Partitioning patterns for distinct classes,

NATO EEC

Composite Fusion
Sign

Fusion Component
Sign

+

NATO
& EEC

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
228 Chapter 10 Constructing Signs for Business Objects’ Patterns

• Intersection pattern for overlapping classes, and
• Fusion pattern for classes.

We also work out what objects the distinct and overlapping class signs refer to.

2.2.1 Distinct pairs of classes

A pair of classes that does not have any members in common is distinct. For example,
the classes birds and bees are distinct. A member of the class birds is never a member
of the class bees. As shown in Figure 10.13, we sign this pattern with the same distinct
sign we use for individual objects. Distinctness is a connection between classes; so, the
class signs, and not their member signs, are linked.

Figure 10.13:
Distinct sign

2.2.2 Overlapping pairs of classes

A pair of classes that has members in common overlap. For example, the classes
blondes and Germans overlap—there are Germans with blonde hair. As shown in Fig-
ure 10.14, we sign this pattern with the same overlapping sign that we use at the indi-
vidual object level. Overlapping, like distinctness, is a connection between classes, so
the overlapping sign links class signs.

Figure 10.14:
Overlap sign

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Composite
Distinct
Sign

Component
Distinct

Sign

BIRDS

r
e
fe

r
s

t
o

BEES

r
e
fe

r
s

t
o

BIRDS

BIRD

BEES

BEE

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

Composite
Overlapping
Sign

Component
Overlapping

Sign

BLONDES

r
e
fe

r
s

t
o

GERMANS

r
e
fe

r
s

t
o

BLONDES

BLONDE

GERMANS

GERMAN

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 229

2.2.3 Three main types of connection for pairs of classes

From an extensional point of view, pairs of classes have a similar set of structural pat-
terns to individual objects. These are the distinct, overlapping and sub-class (matching
individual object’s whole–part) patterns shown in Figure 10.15. A pair of classes must
fall under one of these patterns. We could regard the super–sub-class pattern, where
one class completely contains another, as an extreme case of overlapping. However, in
a similar fashion to individual objects, the convention is to consider this a sub-class and
not an overlapping pattern.

Figure 10.15:
Pattern for classes

2.2.4 Larger groups of classes

As with individual objects, for groups of classes larger than two, there are a wider vari-
ety of possible patterns of connection. It is possible for them all to be distinct [shown in
Figure 10.16 (a)]; or for them all to overlap [shown in Figure 10.16 (b)]. It is also possi-
ble that some will be distinct and some will overlap. Even if every pair in a group of
classes overlaps, the whole group may not overlap [shown in Figure 10.16 (c)]. How-
ever, the same is not true for distinctness. If every pair of classes in a group is distinct,
then the group is distinct.

Figure 10.16:
Schemas for larger
numbers of classes

2.2.5 Inheriting distinct and overlapping patterns

Both the distinct and overlapping class patterns are inherited along the super–sub-class
hierarchy, but in opposite directions (matching the patterns for the individual object

CLASS B

CLASS A

CLASS B

CLASS A

CLASS B

CLASS A

OVERLAPPING SUB CLASSDISTINCT

CLASS C

CLASS B
CLASS A

CLASS C

CLASS B
CLASS A

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

CLASS A CLASS A CLASS ACLASS B CLASS B CLASS B

CLASS C CLASS C CLASS C

CLASS A CLASS B

CLASS C

(a) (b) (c)

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
230 Chapter 10 Constructing Signs for Business Objects’ Patterns

level’s inheritance along the whole–part hierarchy). The distinct pattern is inherited
down the hierarchy. For example, the classes, birds and bees, are distinct and so their
sub-classes, robins and bumble bees, inherit that distinctness. But, as Figure 10.17
illustrates, their super-classes flying animals and insects do not, thus proving distinct-
ness is not inherited upwards.

Figure 10.17:
Inheriting distinct-
ness

Overlapping is inherited up the hierarchy. For example, as illustrated in Figure 10.18,
the classes blondes and Germans overlap and so their super-classes, haired people
and Europeans do as well. However their sub-classes, French blondes and Bavarians
are distinct proving that overlapping is not inherited down the hierarchy.

Figure 10.18:
Inheriting overlap-
ping

As with the individual level connections, this inheritance has implications for how we
model. We push the distinct connections as far up the super–sub-class hierarchy as far
as they will go and the overlapping connections as far down the hierarchy as they will
go. This compacts and increases the functionality of the model.

FLYING
ANIMALS

INSECTS

INSECT

BIRDS

BIRD

BEES

BEE

ROBINS

ROBIN

BUMBLE BEES

BUMBLE
BEE

inherited

HAIRED
PEOPLE

FRENCH
BLONDES

EUROPEANS

EURO-
PEAN

BLONDES

BLONDE

GERMANS

GERMAN

BAVARIANS

BAVARIAN

inherited

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 231

2.2.6 Known and unknown distinct and overlapping patterns

We often do not know all the members of a class. So we cannot always say whether a
group of classes is distinct or overlapping and sign this in the model. This lack of infor-
mation is not necessarily a problem. We only need to know the relevant distinct or over-
lapping patterns. Working out every pattern, relevant or otherwise, would be a waste of
time.

However, when we want to model a group of classes as overlapping, it helps to know at
least one common (overlapped) member. There is, in principle, nothing wrong with sign-
ing them as overlapping when we do not know a common member. However, this is not
a good policy. Finding a common member is a sure way of confirming that the classes
do indeed overlap. Even if we are reasonably sure that they do, it makes sense—as a
safety check—to follow a policy of confirming our intuitions. We can do this simply and
effectively by finding a common member. Figure 10.19 illustrates this process of confir-
mation. If we cannot find a common member, this should make us suspect that the
classes do not, in fact, overlap.

Figure 10.19:
Constructing con-
firmation of over-
lapping

Things are not so easy for distinct patterns. No matter how many distinct instances two
class signs may have, this does not prove that their classes are distinct. There may be
an unknown object that is a member of both classes. So a group of classes cannot be
logically proven to be distinct in the same way as they can be proven to be overlapping.
This means we need to exercise caution before signing classes as distinct in the model.

2.2.7 The distinct and overlapping class pattern objects

The strong reference principle requires that, as we have signed distinct and overlapping
class patterns, the signs refer to objects. These are constructed in the same way as
their individual object cousins. They are the classes of the distinct (or overlapping)
classes. We can illustrate this with the distinct birds and bees classes from Figure
10.13. Its distinct sign refers to the class {birds, bees}, which has the birds and bees
classes as its only members. Furthermore, this class is a member of the distinct class.
This is shown in Figure 10.20, which also shows an example of the pattern for the con-
struction of the overlapping class.

STEP ONE STEP TWO

BLONDESBLONDES GERMANSGERMANS

HELGAHELGA ADOLFADOLF SVENSVEN

Sign Classes as
Overlapping

Sign a Common
Member

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

BLONDESBLONDES GERMANSGERMANS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
232 Chapter 10 Constructing Signs for Business Objects’ Patterns

Figure 10.20:
Class examples of
overlapping and
distinct pattern
objects

Figure 10.21:
Incompletely par-
titioned classes

2.2.8 Partitioning patterns for distinct classes

Like individual objects, where a distinct pattern is often part of a larger individual parti-
tion pattern, distinct class patterns are often part of a larger class partition pattern. A
type of partitioning class pattern has been a natural way of seeing since well before the
emergence of the substance paradigm and its secondary substance hierarchy. For
example, when we think of the class humans, we almost instinctively start partitioning it,
maybe by gender. Then, even though it contravenes the substance paradigm’s single
classification restriction, some of us also start thinking of alternative ways of partitioning,
for example into adults and children. In the class partition pattern, the partitioning class
is divided into distinct partitioned sub-classes. As shown in Figure 10.22, the notation is

GERMANSBLONDES

REAL WORLD

OVERLAPPING PATTERN OBJECT

OBJECT SCHEMA

OVERLAPPING
PATTERN
OBJECT

s
u

p
e
r
fl

o
u

s
s
ig

n
s

sign for
overlapping

class
object

refers to

refers to

OVERLAPPING
BLONDES/
GERMANS
OBJECT

DISTINCT
PATTERN OBJECT

GERMANS BEES

BLONDES BIRDS

OVERLAPPING DISTINCT

CHILDREN

CHILD

HUMANS

HUMAN

ADULT

ADULTSMALE
HUMANS

FEMALE
HUMANS

CHILDREN

CHILD

HUMANS

HUMAN

ADULT

ADULTS

Composite
Super-Sub
Partition

Sign

Superfluous
Distinct

SignsMALE
HUMANS

FEMALE
HUMANS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 233

similar to the individual object partition sign—with the component super–sub-class sign
replacing the whole–part sign.

Often, the partition pattern does not partition a class completely, partitioning only some
of its members into distinct classes. This is a partial or incomplete partition and is signed
by adding an incomplete partition component sign to the composite partition sign. As
shown in Figure 10.21, this is a small flat rectangle that is put between the super–sub-
class sign and the partition box.

Figure 10.22:
Partitioned classes

Figure 10.23:
Partition inherit-
ance

MEN

MAN

MEN

MAN

WOMEN

WOMAN

WOMEN

WOMAN

CHILDREN

CHILD

COMPLETE
PARTITION

INCOMPLETE
PARTITION

HUMANS

HUMAN

HUMANS

HUMANComposite
Incomplete
Partition
Sign

Incomplete
Partition

Component
Sign

MALE
HUMANS

MALE
HUMANS

FEMALE
HUMANS

FEMALE
HUMANS

ANIMALS

ANIMAL

HUMANS

HUMAN

inherited
partition

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
234 Chapter 10 Constructing Signs for Business Objects’ Patterns

2.2.8.1 Partition pattern inheritance

As the example in Figure 10.23 shows, partition patterns (like distinct patterns) are
inherited down the super–sub-class hierarchy. The partition into distinct male and
female animals classes is inherited down the super–sub-class hierarchy to the distinct
male and female humans classes partition. (You will notice that the inherited partition is
the more general male/female partition from Figure 10.22 rather than the human spe-
cific men/women partition from Figure 10.21.)

As with individual level partitions, this has implications for how we model class parti-
tions. It is useful to push them as far up the super–sub-class hierarchy as they will go,
increasing the number of classes that can inherit the pattern. This compacts and
increases the functionality of the model.

2.2.9 Intersection patterns for overlapping classes

Sometimes we want to work with a class constructed from objects that are members of
the overlap of a group of classes. This is an intersection pattern, which goes one step
further than the overlapping pattern and constructs the class of the overlapped mem-
bers. The intersection pattern only applies to overlapping classes, it cannot apply to the
other two types of class patterns: distinct and sub-class. Distinct classes have no mem-
bers in common and so have no use for the intersection pattern. Sub-classes have all
their members in common with their super-class, and so the intersection pattern would
not produce a new class.

We can see how the intersection pattern works with an example. Assume we are target-
ing a group of companies for a sales campaign and we are going to select the group
from a comprehensive list. The list identifies whether companies are large and whether
their headquarters are in the north or south of the country. If we target large companies
in the north (in other words, the class of companies whose members belong to both the
large companies class and the northern companies class) then we need the intersection
pattern shown in Figure 10.24. This illustrates the intersection sign, which is an
enhanced version of the overlap sign.

Figure 10.24:
Intersected
classes

SOUTHERN
COMPANIES

COMPANIES

COMPANY

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Composite
Intersection
Sign

Intersection
Component

Sign
LARGE

COMPANIES

r
e
fe

r
s

t
o

LARGE
COMPANIES

NORTHERN
COMPANIES

NOTHERN
COMPANIES

r
e
fe

r
s

t
o

LARGE
NORTHERN
COMPANIES

LARGE
NORTHERN
COMPANIES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Patterns for the connections between extensions 235

The example in Figure 10.24 also confirms that only overlapping classes can be inter-
sected. It is pointless intersecting the classes northern companies and southern compa-
nies because they are distinct (as they are part of a partition). So we know in advance
that the intersecting class would be empty. The intersected classes in the intersection
pattern must be overlapping so that the intersecting class has members.

The intersecting class, large northern companies, is logically dependant on the inter-
sected classes, large companies and northern companies. The logical dependency is
shown by a black semi-circle sign at the end of the intersection sign (seen in Figure
10.24. The class is derived by the logical dependency. This is shown by the derived
sign, a small grey triangle in the bottom left corner of the class sign. Again this is visible
in Figure 10.24. This derived component sign becomes an integral part of the composite
sign for the class. It needs to be because the class sign can appear in other schemas
without the intersection sign and so the logical dependency sign. Then the derived sign
reminds us of the logical dependency.

2.2.10 Fusion patterns for overlapping classes

Sometimes every member of a group of overlapping classes has an interesting charac-
teristic and this is captured by a class that pools all the members of the group of
classes. For example, at some future date it may be decided to make the citizens of
France and Germany citizens of a new Western Alliance state. The class Western Alli-
ance citizens is the pooling of the members of the classes French citizens and German
citizens. This pattern is called a fusion and is modelled using a fusion sign (shown in
Figure 10.25). You will notice that the classes French citizens and German citizens
overlap; it is possible to have dual citizenship. If they did not (the classes were distinct),
this would be a partition pattern. The fused class, Western Alliance citizens, is logically
dependant on the classes French citizens and German citizens. This is shown in the
same way as for intersected classes, with a logical dependency and a derived sign.

Figure 10.25:
Fusion sign WESTERN

ALLIANCE
CITIZENS

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

Composite
Fusion
Sign

Fusion
Component

Sign

WESTERN
ALLIANCE
CITIZENS

GERMAN
CITIZENS

GERMAN
CITIZENS

r
e
fe

r
s

t
o

FRENCH
CITIZENS

FRENCH
CITIZENS

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
236 Chapter 10 Constructing Signs for Business Objects’ Patterns

2.2.11 A close-knit family of extension patterns

This examination of the patterns of connections between extensions has revealed a
close-knit family of patterns. We have seen how patterns at the individual object level
repeat themselves at the class level. How patterns are inherited up and down the
super–sub-class and whole–part hierarchies. How we can and should generalise the
connections along their inheritance hierarchies to compact and increase the functional-
ity of the model. The examples have given us a feel for how these patterns work with
one another. As we get more experience of business object modelling, they will become
second nature.

3 State hierarchy patterns

In Chapter 7, we examined how object semantics explained substance’s states as
physical bodies that are temporal parts of other physical bodies. Here, we look at the
basic object syntax for states. We look at the sign for a state and how to model the fol-
lowing state patterns:

• State–sub-class hierarchy patterns,
• State–sub-state hierarchy patterns,
• Distinct state patterns,
• Partitioned state patterns, and
• Overlapping state patterns.

These are all spatio-temporal patterns. In the next section, we look at temporal (time
ordered) patterns.

Figure 10.26:
Temporal–whole–
part or ‘state–of’
sign

3.1 The state–of sign

A state is a physical body that is a temporal part of another physical body. This link
between the state and the physical body is a particular type of whole–part tuple. Con-
sider the lepidopter example from Chapter 7 (illustrated in Figure 7.2), where caterpillar
#2 is a state of lepidopter #1. As Figure 10.26 shows, the state–of tuple is a couple
<lepidopter #1, caterpillar #2> belonging to the temporal–whole–part tuples class. (This
is the states tuples class; all states are, by definition, temporal parts of physical bodies.)

CATERPILLAR
#2

LEPIDOPTER
#1

State-Of or
Temporal-

Whole-Part
Component Sign

Composite State-Of
or Temporal-Whole-
Part Tuple
Sign

superflous signs

TEMPORAL-
WHOLE-PART

TUPLES
WHOLE-PART

TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 State hierarchy patterns 237

The temporal–whole–part tuples class is, in turn, a sub-class of the whole–part tuples
class.

As the couple belongs (distantly) to the whole–part class, we sign it with a whole–part
sign. To reflect the fact that caterpillar #2 is a temporal part (state) of lepidopter #1, the
composite state–of sign has a state-of or temporal component sign. In Figure 10.26,
the whole–part and temporal–whole–part tuples classes are drawn. However, these are
normally left out of the schemas because they are superfluous, implied by the state–of
or temporal–whole–part sign.

Figure 10.27:
State–sub-state
hierarchy pattern

Figure 10.28:
State–sub-class
hierarchy pattern

3.2 State–sub-state hierarchy patterns

We saw in Chapter 7 that states can have states and this leads to a state–sub-state
hierarchy pattern. In the example illustrated in Figures 7.6 and 7.7, caterpillars had
early and late stage sub-states, where a substate is defined as a temporal part of a tem-
poral part. So, as shown in Figure 10.27, the pattern is signed using the state–of sign.

LATE
STAGE
CATER-
PILLARS

EARLY
STAGE
CATER-
PILLARS

CATER-
PILLARS

LEPI-
DOPTER

LEPIDOPTERA

GREEN
CATER-
PILLARS

RED
CATER-
PILLARS

LEPIDOPTERA

LEPI-
DOPTER

CATER-
PILLARS

T

TEMPORAL-WHOLE-PART
TUPLES

State-
Sub-Class

Tuple

s
u

p
e
r
flu

o
u

s
s
ig

n
s

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
238 Chapter 10 Constructing Signs for Business Objects’ Patterns

You should notice that this pattern is at the member level, with the state tuples signs
connecting the classes’ member signs.

3.3 State–sub-class hierarchy patterns

Chapter 7 also shows us that states are collected into state classes that can have
state–sub-classes. This state–sub-class pattern is just a super–sub-class pattern,
where the classes are state classes. Figure 10.28 shows this using the example illus-
trated in Figures 7.8 and 7.9, where the caterpillars (state) class has red and green
(state) sub-classes.

Figure 10.29:
Distinct and parti-
tioned states

3.4 Other extension-based state patterns

States, as physical bodies, fall into the same extension-based patterns as other physical
bodies. For instance, they have the distinct, overlapping and partitioned patterns we
examined in the beginning of this chapter. We illustrate this using the lepidopter exam-
ple again. Its states are distinct and also completely partition the lepidopter object. Fig-
ure 10.29 models these two patterns. You can see that the partition is modelled
connecting the classes’ members icons, this is because it operates at the member level.

Figure 10.30: I
Overlapping states

CATERPILLARS

CATER-
PILLAR

PUPAE

PUPA

BUTTERFLIES

BUTTER-
FLY

DISTINCT

PARTITIONED

CATERPILLARS

CATER-
PILLAR

LEPIDOPTERA

LEPI-
DOPTER

PUPAE

PUPA

BUTTERFLIES

BUTTER-
FLY

LEPIDOPTER
#1

INFECTED
LEPIDOPTER

STATE #7

CATERPILLAR
STATE #2

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Time ordered temporal patterns 239

In Figure 10.30, we have used the overlapping caterpillar and infected lepidopter states
from Figures 8.10 and 8.11 to illustrate how we sign an overlapping state.

4 Time ordered temporal patterns

In Chapter 8, we examined how object semantics explains changes using these two
types of object:

• States, and
• Events.

We now look at the object syntax for their time ordered temporal patterns.

4.1 State changes

In object semantics, states are objects and often ordered in time. This ordering can take
a number of patterns; we only look at this sample here:

• Simple state ‘change’ patterns,
• Sequence of states pattern, and
• Alternating states pattern.

We then investigate how the state life history of an object is constructed from a states’
time ordering patterns.

4.1.1 A simple state ‘change’ pattern

The simplest state change involves a ‘change’ from one state to another—for instance,
a change from an ill state into a well state. The states are ordered in time – one after the
other. To describe this pattern, we construct a tuple of the two states and sign its order
with a component time ordering arrow sign (shown in Figure 10.31).

Figure 10.31:
Sign for time
ordering

4.1.2 A time sequence of states pattern

Often the states of an object fall into a time sequence pattern. We can describe this pat-
tern at an individual object level or generalise it to a class level—as in the chairman and
lepidopter examples below.

Composite Time
Ordering Sign

Time Ordering Arrow
Component Sign

ILL STATE
#11

WELL STATE
#12

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
240 Chapter 10 Constructing Signs for Business Objects’ Patterns

4.1.2.1 Individual object level sequence

The chairman thought experiment from Chapter 8 (illustrated in Figure 8.18) provides a
good example of a time sequence pattern of individual states. Each new resignation
and appointment leads to a new chairman state. If we extend the pattern in the thought
experiment we get a sequence, over time, of chairman states—all states of the chair-
man object. In this case, the sequence of states has a temporal gap. This is modelled
with the time ‘gap’ ordering arrow component sign shown in Figure 10.32.

Figure 10.32:
Individual object
level sequence of
states

4.1.2.2 Class level sequence

The ubiquitous lepidopter provides us with an example of a class level sequence pat-
tern. Caterpillars develop into pupae that develop into butterflies. It is the members of
the classes that develop, not the classes themselves, so the ordering sign is linked to
the class members’ signs (shown in Figure 10.33), not the class signs.

Figure 10.33:
Class level
sequence of states

Figure 10.34:
Alternating state
patterns

Composite Time Gap
Ordering Sign

Time Gap Ordering
Arrow Component Sign

MS BROWN
CHAIRMAN
STATE #210

MR SMITH
CHAIRMAN
STATE #64

MR JONES
CHAIRMAN
STATE #68

LEPIDOPTERA

LEPI-
DOPTER

PUPAE

PUPA

T

Composite
Next State
Tuples Class
Sign

CATER-
PILLARS

BUTTER-
FLIES

ILL STATES

ILL
STATE

HEALTH
STATES

WELL STATES

WELL
STATE

PERSONS

PERSON

ILL
STATE #11

ILL
STATE #13

WELL
STATE #12

WELL
STATE #14

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Time ordered temporal patterns 241

4.1.3 Alternating state patterns

States also fall into an alternating pattern, as shown in the well and ill states example in
Chapter 8 (Figure 8.17). We model this using the sign for time ordering (shown in Fig-
ure 10.34). You should notice that, in this case, the model shows both the individual
object and the class level ordering.

Figure 10.35:
Three individual
lepidopter state
life histories

Figure 10.36:
A class level lepi-
doptera state life
history

4.1.4 An object’s state life history

These signs for states' time orderings allow us to tell an individual object’s state life his-
tory (or indeed, a class of objects’ state life histories). Consider the lepidoptera example
again. To determine its state life history we first need to find all the possible patterns for
its individual states. Figure 10.35 provides a simplified version of these in the form of
state life histories for three individual lepidoptera—each one dying at a different stage of

CATERPILLAR
#201

CATERPILLAR
#202

PUPA
#203

CATERPILLAR
#2

PUPA
#3

BUTTERFLY
#4

Beginning
Icon

Ending
Icon

LEPIDOPTERA

BUTTERFLIES

CATERPILLARS

CATER-
PILLAR

&
metamor-
phoses

&
metamor-
phoses

&
dies

&
dies

L
E
P

ID
O

P
T

E
R

IS
B

O
R

N

PUPAE

PUPA

LEPIDOPTER
DIES

PUPA
METAMORPHOSES

BUTTERFLY
METAMORPHOSES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
242 Chapter 10 Constructing Signs for Business Objects’ Patterns

development. Notice the beginning and ending signs. These are, as you can see, based
on the space-time map icons.

We generalise these individual level patterns into a class level history; the result is Fig-
ure 10.36. Notice that as the state life histories are of the individual states of the physi-
cal object, the time ordering pattern is between the members and not the classes. This
is a very simple example. Normally, an object would have a number of different state
partitions, across which states would overlap (illustrated in Figures 8.10 and 8.11).

People familiar with traditional modelling may recognise this as object syntax’s version
of the entity paradigm’s life history diagrams. Getting a picture of something’s life history
is an extremely useful part of business modelling. However, the entity life history has to
work within the confines of the entity paradigm, which typically constrains it to a tree-like
structure. Using the more powerful and sophisticated object semantics enables us to
construct a much more accurate, and so useful, picture of a life history.

4.2 Event cause and effect time orderings

As well as a life history perspective on objects, object syntax offers a cause and effect
perspective centred on events. In Chapter 8 we discussed how Aristotle analysed
understanding into the following four types of cause:

• efficient cause,
• material cause,
• formal cause, and
• final cause.

We now look at how these are modelled with time ordering signs. We do this by exam-
ple. We model, using object syntax, the ‘sculptor carving a statue’ example illustrated in
Figure 8.26. The result is Figure 10.37. We use a new sign (the pre-condition sign) for
the efficient and material causes because the causes are not ordered before or after the
event, but around it. The efficient and material causes are differentiated because the
material cause has a temporal–whole–part connection with the formal cause.

Figure 10.37:
Object syntax’s
event perspective

The life history and event perspectives complement one another. The life history fits the
states into a pattern. The event perspective then explains that pattern by mapping what
‘causes’ the events that change the states.

BLOCK OF
MARBLE

#102

SCULPTOR
#101

STATUE
#103

STATUE
SALE EVENT

#105

CARVING
EVENT
#104

Pre-
Condition
Tuple
Composite
Sign

MATERIAL
CAUSE

EFFICIENT
CAUSE

FORMAL
CAUSE

FINAL CAUSE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Cardinality patterns for tuples classes 243

4.3 Time ordering tuple objects

We have looked at various time ordering (and pre-condition) signs. We now examine, in
deference to the strong reference principle, the objects that these signs refer to. They
are tuples that belong to the appropriate pattern’s tuples class. At the individual level,
they are couple objects as indicated by the two place links to the diamond tuple compo-
nent sign. These are members of one or another of the time ordering or pre-condition
pattern’s tuples classes (illustrated in Figure 10.38).

Figure 10.38:
Time ordering and
pre-condition
tuples classes

5 Cardinality patterns for tuples classes

We now move from time ordering tuples to a particular aspect of tuples classes. We
look at a group of useful modelling patterns—cardinalities. Traditional information mod-
elling uses cardinality patterns for its relational attributes and we re-engineer a version
of the patterns here. A few differences arise because the tuples class and the occupied
class places are objects in their own right in object semantics. This is a change from tra-
ditional modelling, where cardinalities are implicit parts of relational attributes.

In many cases, it is useful to describe the cardinality patterns of a tuples class, but this
notation does not insist on it. A number of notations are used for describing cardinality
in traditional information modelling; most of which can be adapted to object semantics. I
prefer to use the simple one described below, but it does not really matter which one is
used. I suggest that you use the notation you feel most comfortable with, though
remember it will probably need some amendments to cope with object semantics.

TUPLES

TIME
ORDERING

TUPLES

TEMPORAL
GAP

TUPLES

TEMPORALLY
CONTINUOUS

TUPLES

PRE-
CONDITION

TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
244 Chapter 10 Constructing Signs for Business Objects’ Patterns

5.1 Types of cardinality pattern

In the last chapter, we looked at the signs for tuples classes and their occupied class
places. These occupied class places are the basis for the cardinality patterns. Cardinal-
ity is a pattern that, in object syntax, applies to occupied class place objects. When a
cardinality pattern is signed, both an upper and a lower bound are specified. There are
two levels for the lower bound—optional or one. There are also two levels for the upper
bound—one or multiple. These upper and lower bound levels can be combined in four
ways to produce four different cardinality patterns for the occupied class place:

• Optional-to-one pattern,
• One-to-one pattern,
• Optional-to-multiple pattern, and
• One-to-multiple pattern.

We now look at each of these in more detail.

5.1.1 Optional-to-one cardinality pattern

Consider Figure 10.39, which models the person-born-in-Britain tuples class. What is
the cardinality pattern of the class place occupied by the class persons? I have found
that it is important when determining cardinality to confirm one’s intuitions with specific
instances. I go through this confirmation process step by step in this example.

Prince Philip and Queen Elizabeth are both members of the class persons. Prince Philip
is a person and was not born in Britain. So it must be optional for a person to be born in
Britain. Or, in object-speak—it must be optional for members of the class persons to
occupy the person place in a couple that is a member of the person-born-in-Britain
tuples class. So the lower bound for the occupied class place is zero. This is signed in a
similar way to traditional modelling with an ‘0’ on the line between the occupied class
place and the tuples class sign.

Figure 10.39:
Optional-to-one
cardinality pattern

Queen Elizabeth is a person and was born in Britain. So a person can be born in Britain
(a member of the class persons can occupy the person place in a couple that is a mem-
ber of the person-born-in-Britain tuples class). It is safe to assume that a person cannot

BRITAIN

QUEEN
ELIZABETH

BRITAIN
PRINCE
PHILIP

QUEEN
ELIZABETH

'Optional'
Lower Bound Sign

'One' Upper
Bound Sign

PERSON-BORN-
IN-BRITAIN

TUPLES

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN
r
e
fe

r
s

t
o

PERSON-BORN-
IN-BRITAIN TUPLES

r
e
fe

r
s

t
o

PERSONS

PERSONS

r
e
fe

r
s

t
o

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Cardinality patterns for tuples classes 245

be born more than once, in Britain or anywhere else. So the maximum number of times
a person can appear in the person place of a person-born-in-Britain couple is once. This
means the upper bound for the occupied class place is one, which is noted by a ‘1’ sign
on the class place link. By convention we draw the upper bound sign closer to the tuples
class sign than the lower bound sign. Both these upper and lower bound signs are
shown in Figure 10.39.

5.1.2 One-to-one cardinality pattern

If we now model the son–father tuples class with its place classes son and father then
we get the schema shown in Figure 10.40. A son always has one and only one biologi-
cal father; so, every son appears once and only once in the son place of a father–son
couple. This means the upper and lower bounds are both one. So two ‘1’ signs are put
by the occupied class place sign, next to the tuples class sign.

Figure 10.40:
One-to-one cardi-
nality pattern

Figure 10.41:
Figure 10.41
Optional- and one-
to-multiple cardi-
nality patterns

PRINCE
WILLIAM

PRINCE
CHARLES

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

SONS SON-FATHER
TUPLES

FATHERS

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

FATHERSSONS

'One' Upper
Bound Sign

'One' Lower
Bound Sign SON-FATHER

TUPLES

JOHN

ANNE

SUE SUE PROJECT
#1

SUE PROJECT
#2

JOHN PROJECT
#2

PROJECT
#1

PROJECT
#2

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

D
O

M
A

IN

EMPLOYEES EMPLOYEE-WORKING-
ON-PROJECT TUPLES

PROJECTS

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

PROJECTSEMPLOYEES 'Multiple'
Upper Bound
Signs

'Optional' Lower
Bound Sign

'One' Lower
Bound Sign

EMPLOYEE-WORKING-
ON-PROJECT

TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
246 Chapter 10 Constructing Signs for Business Objects’ Patterns

5.1.3 Optional-to-multiple and one-to-multiple cardinality patterns

Now consider the model in Figure 10.41, this shows the employee–project tuples class
originally illustrated in Figures 3.23 and 3.24. An employee will sometimes work on a
number of projects. This means the upper bound for the occupied class place must be
greater than one. For this, we use the multiple sign. As you can see, it looks like a
crow’s foot. Some employees, such as secretarial staff, will never work on a project. So
the occupied class place has a lower bound of zero. We use the same ‘0’ sign that we
used in Figure 10.40 for this. All projects have one or more employees working on them.
So the lower bound of the occupied class place link is one and the upper bound is mul-
tiple. These optional-to-multiple and one-to-multiple cardinalities are is signed in Figure
10.41.

5.1.4 Cardinality pattern signs

These examples cover the only four possible signs for the cardinality of an occupied
class place. A full list is given in Figure 10.42. If we are going to sign the cardinality of
an occupied class place then we will use one of them. Remember, however, that unlike
some traditional modelling notations, each occupied place of a tuples class can be
given a cardinality pattern. So a tuples class can have as many cardinality patterns as it
has occupied class places.

Figure 10.42:
The four compos-
ite cardinality pat-
tern signs

5.2 Cardinality patterns as objects

Cardinality signs, like the distinct and overlapping signs, refer to class objects. But,
which class objects? If we analyse the model carefully we can see the members of the
cardinality classes—occupied class place objects.

5.2.1 Occupied class places as objects

We looked at the signs for occupied class places in the last chapter (see Figures 9.25
and 9.26). We now work out what these signs refer to. We start with the signs for indi-
vidual tuples and work up to the occupied class place signs.

Optional

Optional-To-One

Optional-to-Multiple

One-To-One

One-To-Multiple

Multiple

Composite Cardinality Signs

Component Cardinality Signs

CLASS

MEMBER

CLASS

MEMBER

One
CLASS

MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Cardinality patterns for tuples classes 247

The sign for individual tuples, such as <Prince Charles, Prince William>, is a black dia-
mond. This component has a number of lines, called (tuple) place component signs
joining the diamond to the signs for the objects that make up the tuple. For example, in
Figure 10.43, a component place sign joins the black diamond tuple sign to the Prince
Charles sign.

Figure 10.43:
What occupied
class places signs
refer to

The tuples class signs have a component that looks similar. This is the (tuples) class
place sign. Like the place component sign, it is a line. Unlike it, the line does not have to
join the tuples class sign to another sign. For example, the class place sign on the right
of the father-child tuples class in Figure 10.43 is not joined to anything. The class place
sign can join the tuples class sign to another sign—as shown by the class place sign
joining the fathers class sign to the father-child tuples class in Figure 10.43. When this
happens, the class place is said to be occupied and a black diamond (the tuple sign) is
added to the line.

What object does this occupied class place sign refer to? Despite the similarity of the
signs, it cannot reflect a simple construction relationship as the tuple’s place sign does.
The connection between the father-child tuples and fathers classes is not one of a tuple
constructed from an object. Instead, it is a tuple, <father-child tuples, fathers> (illus-
trated in Figure 10.43). That is why the occupied class place component sign is a black
diamond, the sign for a tuple. In general, occupied class place signs refer to a couple
with the format <tuples class, place class>.

5.2.2 Cardinality classes with occupied class places as members

These occupied class places are the members of cardinality classes (shown in
Figure 10.44). For example, the one-to-one cardinality sign refers to the one-to-one
bound cardinalities tuples class. This has as members all occupied class places with a
one-to-one cardinality, including the one shown in the figure.

FATHERS

 PRINCE
CHARLES

r
e
fe

r
s

t
o

PRINCE
CHARLES

PRINCE
WILLIAM

Father-Child Tuples
Occupied Class Place

IN
F
O

R
M

A
T

IO
N

M
O

D
E
L

D
O

M
A

IN

FATHER-CHILD
TUPLES

FATHERS
FATHER-CHILD

TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
248 Chapter 10 Constructing Signs for Business Objects’ Patterns

Figure 10.44:
Underlying cardi-
nality model

The figure also illustrates how, once the composite cardinalities are seen as classes,
they can be generalised into their elements. The one-to-one cardinality class can be
generalised as a sub-class of the ‘one lower bound cardinalities’ and the ‘one upper
bound cardinalities’ tuples classes. We can also see quite clearly how much easier it is
to use the cardinality signs than the more long-winded couple and tuples class–member
signs.

5.3 Inheriting cardinality patterns

There are constraint patterns for the inheritance of cardinality patterns up and down the
super–sub-class hierarchy. They are easy to work out; so try doing it for yourself.

6 A pattern for compacting classes

So far, in this chapter, we have looked at how object syntax helps us model objects.
Now, we turn our attention to a pattern that helps us generalise classes and so compact
the model. This is the pattern of tuples classes defining their place classes.

Once we identify the pattern, we generalise the place classes up the super–sub-class
hierarchy. We can then eliminate the original, less general, place classes. This com-
pacts the model without compromising its information content. This is a good illustration
of one way in which compacting works and how we handle it within object syntax. We
shall re-use this compacting pattern in the worked examples in Part Six.

6.1 Constructing an example of the pattern

To illustrate the compacting, we need an example of the pattern. We get one by con-
structing a derived place class from a tuples class. Step one, shown in Figure 10.45, is
taking the father–child tuples class. At this stage, it has no occupied class places. Step
two is identifying in each of the member tuples, the object that occupies the father

CLASS

MEMBER

LOWER
BOUND

CARDINALITIES

CLASS

MEMBER

s
u

p
e
r
fl

o
u

s
s
ig

n
s

CLASS

MEMBER

UPPER
BOUND

CARDINALITIES

'OPTIONAL TO ONE'
BOUND

CARDINALITIES

'ONE TO MULTIPLE'
BOUND

CARDINALITIES

'OPTIONAL'
LOWER BOUND
CARDINALITIES

'ONE'
LOWER BOUND
CARDINALITIES

'ONE TO ONE'
BOUND

CARDINALITIES

'ONE'
UPPER BOUND
CARDINALITIES

'OPTIONAL TO MULTIPLE'
BOUND

CARDINALITIES

'MULTIPLE'
UPPER BOUND
CARDINALITIES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 A pattern for compacting classes 249

place. Step three is collecting all these objects into a class. This gives us a fathers class
that occupies one of the father–child tuples class places.

Figure 10.45:
Constructing the
logically depend-
ent place class
fathers

The class fathers is defined as those persons who have a father–child tuple linking
them to a child—so it is logically dependent on the father-child tuples class. This makes
it derived. This is modelled in the usual way; with logical dependency and derived signs
(shown in Figure 10.45).

We will spot this pattern frequently if we keep asking whether there is a logical depend-
ency between a tuples class and its place classes. Until now, we have tended to
assume that they are logically independent. In this father–child tuples case, and many
other cases, if we had asked ourselves the question, we would have realised that there
is a logical dependency.

Figure 10.46:
Making a derived
place class redun-
dant

6.2 Using the pattern to compact the model

We now have an example of the pattern of tuples classes defining place classes. So we
can illustrate the compacting. We do this in the three steps shown in Figure 10.46. In
the first step, we generalise the fathers class (the occupied class place) up the super–

PRINCE
CHARLES

PRINCE
CHARLES

PRINCE
HARRY

PRINCE
HARRY

PRINCE
CHARLES

PRINCE
CHARLES

PRINCE
PHILIP

PRINCE
PHILIP

PRINCE
CHARLES

PRINCE
HARRY

PRINCE
CHARLES

PRINCE
HARRY

PRINCE
CHARLES

PRINCE
WILLIAM

PRINCE
CHARLES

PRINCE
WILLIAM

PRINCE
PHILIP

PRINCE
CHARLES

PRINCE
PHILIP

PRINCE
CHARLES

FATHERS

FATHER

FATHER-SON
TUPLES

FATHER-SON
TUPLES

S
T

E
P

O
N

E
S
T

E
P

T
W

O
S
T

E
P

T
H

R
E
E

FATHER-SON TUPLES

FATHER-SON TUPLES

FATHER

PRINCE
CHARLES

PRINCE
HARRY

PRINCE
CHARLES

PRINCE
WILLIAM

PRINCE
PHILIP

PRINCE
CHARLES

FATHER-SON
TUPLESFATHER-SON TUPLES

FATHERS

FATHER

STEP ONE STEP TWO STEP THREE

PERSONS

PERSON
si a f ather of

FATHERS

FATHER

PERSONS

PERSON

si a f ather of

PERSONS

PERSON
si a f ather of

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
250 Chapter 10 Constructing Signs for Business Objects’ Patterns

sub-class hierarchy to the persons class. In the second step, we generalise the ‘is a
father of’ occupied class place from the father class to the persons class. At this stage,
the fathers class no longer has a role to play; so, we classify it as redundant. The grey
derived component sign in step one becomes a black redundant component sign. In the
third and final step, we eliminate the now redundant fathers class from the model.

Often, when we are growing a business model, we construct classes that are logically
dependent on tuples classes. These normally serve a purpose during the early stages.
But, in most cases, they are redundant and so do not need to be implemented. As the
model matures, we compact it by eliminating the redundant classes.

In this example of the compacting process, we eliminated the fathers class. However, it
is sometimes useful to keep a record of redundant classes. Then, we do not eliminate
the class but leave it in the model flagged as redundant. It then occupies a kind of limbo,
kept in the model for reference purposes only.

7 Where we are

Compacting the model is an important part of business modelling, and generalising a
class place’s link up the super–sub-class hierarchy is a useful pattern for compacting.
The other patterns we looked at are also useful when business modelling. We will find
ourselves (re-)using most of them. As well as constructing object models of useful pat-
terns, this chapter has helped us develop a clear idea of how the object notation cap-
tures patterns of business objects, an essential part of good business object modelling.

This is the end of the first half of the book, the part that concentrates on helping you
understand what business objects are. In the next half of the book, Part Six, we use
worked examples to demonstrate an approach that uses business objects to re-engi-
neer the entity formats of existing systems.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Part Six
Applying Business Objects

Chapter 11 The REV-ENG: An Approach to Applying
Business Objects

Chapter 12 Re-Engineering Country’s Entity Format

Chapter 13 Generalising Country’s Re-Used Patterns

Chapter 14 Re-Engineering Our Conceptual Patterns
for Country

Chapter 15 Re-Engineering Region

Chapter 16 Re-Engineering Bank Address

Chapter 17 Re-Engineering Time

Chapter 18 Starting a Re-Engineering Project

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 11
The REV-ENG: An Approach to

Applying Business Objects

1 Introduction

2 The REV-ENG approach

3 The worked examples

4 A systematic approach to re-engineering

5 A framework for the model

6 Generalisation and compacting

7 What’s next

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
254 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

1 Introduction
In Parts One to Five we developed an understanding of the object paradigm and busi-
ness object modelling. We now know what a business object is and how to model it.
Here, in Part Six, we develop a feel for how to apply business objects to re-engineering
entity-based computer systems. We do this by working through several examples using
the systematic REV-ENG method. In this introductory chapter to Part Six, we take an
overview of the REV-ENG method and the content of the worked examples.

2 The REV-ENG approach

The REV-ENG method is designed to re-engineer the business paradigms embedded in
existing computer application systems—ones that are used for such tasks as account-
ing or foreign exchange trading. It is here that we start to see the actual benefits of re-
engineering.

The previous parts of the book have been, in some ways, a preparation for this. When
we re-engineered the entity paradigm into the object paradigm, we gained a clear
understanding, at a general level, of:

• What the object paradigm is,
• What kind of business objects the world contains, and
• How to describe these in a model.

These are worthy achievements, but by themselves they do not actually deliver any
business benefit. We harvest the benefits when we re-engineer our entity-based com-
puter application systems.

Our re-engineering of the entity paradigm in the previous parts of the book involved
challenging fundamental assumptions—the more fundamental the better. Now that we
have established the object paradigm, we start working within its fundamental assump-
tions. In this part of the book, we re-engineer the entity business paradigms embedded
in computer systems into object business paradigms (illustrated in Figure 11.1). We
transform their entity-formats into an object model, using the object paradigm as a foun-
dation, rather than the subject of the re-engineering. This re-engineering, by its very
nature, is less fundamental and more structured. This has certain advantages. Because
we are working within a framework, we can guarantee a practical result. This takes the
uncertainty out of re-engineering.

Figure 11.1:
Re-engineering
entity business
paradigms

Entity
Paradigm

Object
Paradigm

Object
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Entity
Business
Paradigm

#1 Entity
Business
Paradigm

#2 Object
Business
Paradigm

#1 Object
Business
Paradigm

STEP ONE STEP TWO

SHIFTING TO THE
OBJECT PARADIGM

SHIFTING THE
BUSINESS PARADIGMS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The worked examples 255

Using entity-based computer systems as the starting point for our re-engineering ena-
bles us to define a systematic method for re-engineering (the REV-ENG method). This
makes the re-engineering both effective and efficient. This is very different from discov-
ering a fundamental shift, such as the shift to the object paradigm, which involves the
kind of inspiration that cannot be planned in advance. With the REV-ENG method, the
re-engineering of the entity business paradigms can be planned and executed with a
reasonable amount of precision. This makes it a viable commercial approach.

3 The worked examples

The easiest and best way to learn the approach is by working through examples. That is
what we do in the following chapters.

3.1 Picking an element of an existing computer system

In each example, we pick a small element of an existing computer system; typically:
• An entity type,
• And, its associated;
• Attribute types,
• Entities, and
• Attributes.

We use these as the starting point for the re-engineering process. For each of them, we
work through a series of steps that transmutes their primitive entity formats into a pow-
erful and sophisticated object model.

The worked examples serve two purposes:
• First, they help us to understand what re-engineering a business paradigm

involves and how the REV-ENG method works.
• Second, they provide us with basic object models, which we can re-use

again and again in subsequent re-engineerings.

Because the examples include fundamental business patterns (ones that are used in a
wide range of businesses), the basic object models are likely to be reusable in most re-
engineerings.

3.2 The worked examples’ business patterns

The worked examples are organised into groups based on two types of business pat-
tern:

• Spatial patterns, and
• Temporal patterns,

The first group—spatial patterns—is based on three simple entity formats that are found
in many business computer systems:

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
256 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

• Country,
• Region, and
• Address.

We re-engineer these into a comprehensive object model of our spatial patterns. In the
process, we also re-engineer a general object model for naming patterns.

The second group—temporal patterns—is based on two simple entity formats:
• Bank holiday, and
• Weekend.

We re-engineer these into a general object model of our temporal patterns.

The early examples are designed to help you become familiar with the systematic
re-engineering method by carefully taking you through each step in the process. We
begin with a simple example—country—whose re-engineering is straightforward. This
provides a comfortable atmosphere in which to start establishing the basic principles of
the method.

The later examples, building on the established principles, are designed to help you
understand what is happening in the re-engineering and to develop a feel for how enti-
ties are transformed into objects. You will learn how to construct simple general objects
that, through re-use, compact the object model. And, you will begin to appreciate how
accurate your analysis needs to be within the object paradigm.

3.3 Entity formats based on working computer systems

All the entity formats in the examples have come from working computer systems. I
have changed some details, for reasons such as confidentiality and ease of understand-
ing. They are common formats that could have come from any number of systems. In
the examples, we assume that they come from a single working computer system (this
is not too far from the truth).

4 A systematic approach to re-engineering

A systematic approach to re-engineering entity formats is made possible by the founda-
tion work done on the re-engineering of the entity paradigm into the object paradigm.
Over the years, I have refined the systematic approach into a more formal method
called REV-ENG. This is a nick-name that a modelling team gave to an early version of
the method; it is a contraction of REVerse ENGineering. (When we first started, we
thought that what we were doing was reverse engineering. It was only later that we real-
ised we were re-engineering; hence, the name.) The method simplifies the re-engineer-
ing process by formalising the approach into the step-by-step system illustrated in the
worked examples.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 A systematic approach to re-engineering 257

4.1 Re-engineering data

The method focuses on re-engineering data—in particular the entity formats in an exist-
ing legacy system. In my experience the data in most systems contains enough of the
important patterns to enable us to construct the general patterns needed for a compre-
hensive business model. (Remember, as we discussed in Chapter 2, that the data con-
tains patterns for both business bodies and events.)

Process is deliberately ignored by the method. In the early days, we attempted to re-
engineer both data and process. However, we soon found that it is practically impossi-
ble to effectively re-engineer process into a business model. The problem is that proc-
ess has a language-like linear structure. (That is why we talk about programming
languages in contrast to database management systems.) Like everyday language (and
unlike paper tables and computer data), these linear constraints so seriously distort
process’s view of the business that it cannot be re-engineered systematically. This has
never caused us a problem. We just simplified the re-engineering by ignoring process.
This was no loss; the more explicitly structured data contained more than enough of the
object patterns we needed (including event patterns).

4.2 Stages in the method

The worked examples make more sense if we first look briefly at an outline of the
method. The method divides the re-engineering into two main stages:

• Re-engineering the entity format of the existing entity system, and
• Re-engineering our conceptual patterns for the entity format.

These are illustrated in Figure 11.2.

Figure 11.2:
Two stages of re-
engineering

4.2.1 Re-engineering the entity format of the existing entity system

The elements of the entity format are re-engineered one by one. Each re-engineering
starts with a sign in the entity format; from it an entity in the ‘real world’ is identified. This
entity is then re-engineered into an object and a sign constructed for the object in the
model. This process is illustrated in Figure 11.3.

Re-Engineering
The Existing

System's
Entity-Format

Re-Engineering
Our Conceptual

Patterns For The
Entity Format

Entity-
Format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
258 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

Figure 11.3:
Re-engineering
the existing sys-
tem’s entity for-
mat

4.2.1.1 Rules for ordering the elements of the re-engineering

I have found that it is worth following two simple rules when choosing the order in which
to re-engineer the various elements of the entity formats. This makes the whole process
of re-engineering much more straightforward.

The first rule is:
Re-engineer the individual entity and entity type signs before their associated
individual attribute and attribute type signs.

This is only common sense. We obviously need to work on the entity sign, before we
can move onto its dependant attribute signs.

The second rule—for individual entities and entity types—is:
Re-engineer a couple of individual entity signs and use the patterns to re-engi-
neer their entity type sign.

This again is common sense. It is much easier to establish the patterns with more tangi-
ble individual entities than with ‘abstract’ entity types. This is sometimes called working
by example.

The second rule only needs a change of name to apply to attributes. After the change, it
reads:

Re-engineer a couple of individual attribute signs and use the patterns to re-
engineer their attribute type sign.

4.2.2 Re-engineering our conceptual patterns for the entity format

In the second stage, of the process we re-engineer our conceptual patterns (in other
words, the patterns our brain uses) for the entities in the entity format. This follows simi-
lar steps to the first stage, with the addition of one initial step. We:

• Find a relevant conceptual pattern,

ENTITY OBJECT

ENTITY
SYSTEM

OBJECT
MODEL

ENTITY
DOMAIN

ENTITY PARADIGM OBJECT PARADIGM

OBJECT
DOMAIN

ENTITY FORMAT RE-ENGINEERING PROCESS

IDENTIFY
ENTITY

RE-ENGINEER
INTO AN
OBJECT

CONSTRUCT
OBJECT

SIGN

Entity
Format

Sign

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 A systematic approach to re-engineering 259

• Identify the entity (entities) the conceptual pattern refers to,
• Re-engineer it (them) into objects, and
• Then construct signs for the objects in the model.

These steps are illustrated in Figure 11.4. The reason we need the extra first step of
finding a relevant conceptual pattern is that—unlike the entity formats in the existing
computer systems, these are not formally listed. It involves some effort, and in some
cases, ingenuity to find relevant ones.

Figure 11.4:
Re-engineering
our conceptual
patterns

4.3 Following the systematic method

In the worked examples, these two stages (and the steps within them) occur repeatedly.
However, once we have firmly established the steps in the process, we focus on the
nature of the re-engineering. This means that, in later examples, we do not work
through each step in detail.

This should not be seen as a licence to miss out steps when you re-engineer. It is
tempting to do so, but you should resist. Go through every step in the process, espe-
cially the first few times you re-engineer. Even someone who is experienced can easily
take a wrong turning. Relying on intuition or a gut feeling, particularly at the start, is a
sure recipe for slipping back into the old (entity) way of seeing and almost bound to lead
you astray. Following the full process helps keep you on the straight and narrow.

Furthermore, and perhaps as important, when the model is being reviewed, your
detailed workings will make it much easier for the reviewer to see any wrong turnings
you may have taken. With the workings revealed, the re-engineering will not look like a
series of magic rabbits appearing from nowhere out of top hats.

CONCEPTUAL PATTERN RE-ENGINEERING PROCESS

ENTITY OBJECT

OUR CONCEPTUAL
SYSTEM

ENTITY PARADIGM OBJECT PARADIGM

OBJECT
MODEL

ENTITY
DOMAIN

OBJECT
DOMAIN

IDENTIFY
ENTITY

IDENTIFY
CONCEPTUAL

PATTERN

RE-ENGINEER
INTO AN
OBJECT

CONSTRUCT
OBJECT

SIGN

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
260 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

5 A framework for the model

In the worked examples, you will see that the objects have been allocated to one of
these three broad levels:

• Framework level,
• Application level, and
• Operational level.

I have found that this not only makes the model easier to understand but helps in the
system building process.

5.1 The framework level

The framework level contains the object meta-model. I have found it helps to have this
explicitly described in the model. So, rather than start each project with a blank sheet of
paper, I start with a framework meta-model.

In the object schemas, I identify the framework level with a background shading. Figure
11.5 has a sample. Any model object within the shading is a framework object.

Figure 11.5:
An example of
framework level
shading

5.2 Other levels in the model

There are two non-framework levels:
• The application level, and
• The operational level.

I call those model objects that will be built during the system development, application
level objects. I call those that are typically set up during live operation by the users of
the finished system, operational objects.

I use a similar shading method of identification to differentiate these two levels of
objects. I shade the background of the operational level objects; so, by default, the
application level objects have no background shading. Figure shows an example of the
different shadings. In it the class transactions is in an area with no shading signifying it

CLASSES

TRANS-
ACTIONS

FRAMEWORK
LEVEL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 A framework for the model 261

is application level; whereas Transaction #123 is in an area of light shading signifying
that it is an operational level. As you can see in the figure, the framework shading is
darker than the operational shading.

Figure 11.6:
An example of
operational level
shading

I find it useful to start modelling with individual objects, particular examples of the more
general classes. These are more tangible and help me (and others) to see the underly-
ing patterns more clearly. These individual objects are often operational level, objects
that the users would set up. Consequently, I usually end up with quite a number of oper-
ational objects in my working model. When I tidy up the model for the next stage of sys-
tem building, I purge them because they are not needed.

5.3 Assuming that all classes are application level objects

Working in the entity paradigm, it is easy to assume that the application-operational and
type-individual distinctions are the same or similar. In other words, that all entity types
are application level and all individual entities are operational level. This assumption is
wrong.

Some people carry this mistaken assumption across into object modelling. They
assume that all classes are application level and all individual objects are operational
level. This places an unnecessary restriction on their modelling. We can show this with
examples of classes that are at the operational level and individual objects at the appli-
cation level.

Consider the car types class modelled in Figures 6.8 and 6.9. This has a member
class, Minis. If we assume all classes are application level, we would classify the Minis
class as application level. However, if someone was building a general package for car
manufacturers, it would make no sense for them to construct in the system ‘individual’
car types, such as Minis, that vary from manufacturer to manufacturer. They would let
each manufacturer set up their own. So Minis, despite being a class, is an operational
object.

CLASSES

TRANSACTIONS

TRANSACTION
#123

FRAMEWORK
LEVEL

APPLICATION
LEVEL

OPERATIONAL
LEVEL

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
262 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

Consider a general Bank of England reporting system for banks. We would expect this
to contain information about the Bank of England as standard. Because it is an individ-
ual object, not a class, we might be tempted to allocate it to the operational level of our
business model. Yet, it is not something that the users at individual banks would be
expected to set up. So, despite being an individual object, it is an application level
object. This and the last example are modelled in Figure 11.7.

Figure 11.7:
Examples of appli-
cation and opera-
tional level objects

5.4 Levels as objects

In the object paradigm, with its strong reference principle, the level shadings are signs
referring to objects—level objects. The framework level object is the meta-class of all
the framework objects. Each level object is the meta-class of all objects in that level.
These meta-classes are modelled in Figure 11.8, which also shows the individual appli-
cation and overlapping operational objects illustrated in Figure 11.7—though without
their connections.

Figure 11.8:
Level objects

5.5 Expanding the framework level—the general lexicon

I find it useful to expand the framework level into a ‘starter pack’ for future re-engineer-
ing projects. I call this a general lexicon.

OPERATIONAL
LEVEL

MINIS

MY CAR
operational
level class

application level
individual object

APPLICATION
LEVEL

REGULATORY
AUTHORITY BANK OF

ENGLAND

CAR
TYPES

OBJECTS

FRAMEWORK
OBJECTS

APPLICATION
OBJECTS

OPERATIONAL
OBJECTS

META-MODEL INFORMATION MODEL

CLASSES INDIVIDUAL
OBJECTS

MINIS

MY CAR

REGULATORY
AUTHORITY BANK OF

ENGLAND

CARS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 A framework for the model 263

5.5.1 What is a general lexicon?

In everyday language, a lexicon is a store of words or concepts. Dictionaries can be
seen as, and in some cases, have been called lexicons. As far as a business object
modelling is concerned, the general lexicon is a store of general re-usable model
objects.

I have found that I can manage generalising and identifying similar objects across
projects more effectively, if I use a general lexicon. This stores the model objects that
have fruitful patterns, ones that are re-used in most models. I classify all these as frame-
work level. So, for all practical purposes, the general lexicon is the framework level.

Sometimes I have found, and you will find, it useful to create specialist lexicons for spe-
cialist areas of the business. For instance, if you were to work on a number of account-
ing systems, you might construct an accounting lexicon. These would contain models of
the accounting objects that you found were re-used in most of the accounting models.

5.5.1.1 General lexicon as a transformation of the Aristotelian categories

The general lexicon can usefully be seen as the object paradigm’s transformation of the
Aristotelian categories (discussed in Figure 4 and illustrated in Figure 4.14). The object
meta-model embedded in the framework level is the transformed version of Aristotle’s
framework of categories—substance and types of attribute (quality, quantity, etc.). The
rest of the general lexicon is the transformed version of the lower level Aristotelian cate-
gories. It records the same types of things, such as the humans class being a sub-class
of the more general animals class.

5.5.2 Constructing a general lexicon.

An essential precursor to the construction of a useful general lexicon is identifying
model objects that will be re-used. If, over a sufficiently large number of models, the
model of a particular object (or group of objects) is re-used frequently, then it is a likely
candidate for the general lexicon. The naming pattern that appears in all of the first
group of worked examples is a good example.

With experience, modellers find that they can judge whether model objects are candi-
dates for the general lexicon. There is a useful rule of thumb that helps them make that
decision. It is the more general a model object, the more likely it is to be re-used; the
less general, the less likely it is to be re-used. Here, we measure generality in terms of
how high up either the class–member or super–sub-class hierarchies the object is. The
class objects is the limiting case; it is at the top of both hierarchies. As we move down
the hierarchies from objects, we get closer and closer to the border of the general lexi-
con (framework level) and the application level (illustrated in Figure 11.9).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
264 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

Figure 11.9:
The general lexi-
con border

The exact location of the general lexicon border is a matter of opinion. Different people
sometimes have slightly different views. In the end, it does not matter exactly where the
border is, so long as the majority of really re-usable model objects are inside it, ready for
re-use.

When we decide a model object belongs to the general lexicon, implementing this deci-
sion is trivial; we classify it as framework level. Because the general lexicon is tied into
the framework level, whenever we classify a model object as framework level, it auto-
matically belongs to the general lexicon.

6 Generalisation and compacting

A key objective of business object modelling is generalising objects. This is what deliv-
ers compacting and its associated benefits.

6.1 Spotting that objects share the same patterns

An important element in generalisation is spotting that objects share the same patterns.
The schemas are a useful tool for this. They describe the pattern of relations between
objects. This is what Frege called the sense element of meaning—distinguishing it from
the reference element (we looked at Frege’s description of meaning in the Figure 5).
The object schemas (and so the business model) map Fregean sense patterns. Map-
ping these sense patterns creates an environment that encourages generalisation. The
object schemas play a key role. They can make the sense patterns explicit in a way that
makes similar patterns easier to spot.

The way in which the schema is drawn influences how it is understood. In well drawn
schemas, similar patterns have similar shapes, making them easier to spot. However, a
badly drawn schema can make two similar patterns look dissimilar. So, it is worth

OBJECTS

GENERAL LEXICON
(FRAMEWORK)
LEVEL

APPLICATION
LEVEL

OPERATION
LEVEL

 General
Lexicon Border

HIERARCHY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Generalisation and compacting 265

spending some time drawing an object schema properly. I find that I sometimes go
through five or more drafts before I arrive at something I am happy with. This is worth
doing because it encourages substantial generalisation, and so substantial compacting.

6.2 Compacting metrics

I find that I can get a rough idea on how successful the re-engineering is by monitoring
the scale of generalisation and compacting.

6.2.1 Population, re-use and generalisation metrics

I usually measure the compacting directly with population metrics that compare the
number of items in the existing entity system with the number in the object model. I also
measure the actual amount of re-use and generalisation that has occurred in the re-
engineering of the business model. By comparing the two sets of metrics, I can see the
correlation between generalisation, re-use and compacting.

6.2.2 Model levels

I normally divide the metrics into levels. I do this for both the entity system and object
models' metrics. The entity system’s metrics are divided into the following two levels:

• Type, and
• Individual.

The object model’s metrics are divided into the following three levels:
• Framework,
• Application, and
• Operational.

The framework level objects are separated so that they can be excluded from the over-
all metrics. We exclude them because they are not constructed during the re-engineer-
ing. They are part of the framework model rather than the model for the particular re-
engineering.

The application and operational level objects are included in the overall metrics, but a
distinction is made between the two because only the application level objects are
passed onto the systems analysis stage. By contrast, operational objects are eventually
purged from the business model. These are just examples of the types of objects that
the user will construct after the system has gone live. So these two levels can be used
to separate the impact on compacting of generalisation during development—the appli-
cation level—from that during operation—the operational level.

Even though we formally purge the operational objects from the business model, we
often use them during the later stages of system building. For example we might use
them for illustrative examples during the systems analysis and also as the basis for the
test data used in system testing.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
266 Chapter 11 The REV-ENG: An Approach to Applying Business Objects

7 What’s next

Enough of this ‘abstract’ discussion of re-engineering. It is time to look at the worked
examples, including their metrics. We start in the next chapter with the first group—spa-
tial patterns—and its first entity format—country.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 12
Re-Engineering Country’s Entity

Format

1 Introduction

2 The systematic re-engineering process

3 The context for re-engineering

4 Re-engineering country entity type sign

5 Re-engineering attribute type signs

6 Basic elements of the re-engineering completed

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
268 Chapter 12 Re-Engineering Country’s Entity Format

1 Introduction
We now start on the re-engineering of country—the first of three spatial patterns (listed
in Figure 12.1). In this worked example, we start growing our object model for spatial
patterns by re-engineering the country entity format. We will extend the model in the
next two worked examples by re-engineering the region and address entity formats. The
final model then forms a very basic building block that we can re-use repeatedly when
we re-engineer (and build) business systems.

Figure 12.1:
First of three
examples of spa-
tial patterns

We start by re-engineering the spatial patterns embedded in the country’s entities and
entity type. This is a simple and straightforward task. It will appear mostly as just good
common sense—careful, accurate, and maybe a little pedantic—but still common
sense. This establishes the patterns of re-engineering, which we can then (re-)use later
without too much explanation.

We then re-engineer the country format’s two attribute types, both names, to reveal a
common name pattern. Most entities have name attributes and so, in a re-engineering
of any size, the name pattern is bound to crop up many times. This makes it is a very
useful pattern.

The name pattern had to be stretched and twisted to fit into the entity paradigm’s frame-
work. So the example provides us with a good illustration of how the process of re-engi-
neering unwinds distorted entity formats, and the kind of unfamiliar objects this can
produce. As we shall see, this involves paying particular attention to the accuracy of the
analysis.

Once we have found the new name pattern, we need to absorb it into our way of seeing.
Unfortunately, most of us have the current distorted entity name pattern deeply embed-
ded in the way we see. So, even though the undistorted object name pattern is clearer
and simpler, it can appear odd and awkward at first sight. But once we learn to see with
the new pattern, we appreciate its superiority.

2 The systematic re-engineering process

We follow the systematic re-engineering process, working in two stages as described in
the previous chapter and shown in Figure 12.2. In the first stage, we re-engineer the

COUNTRY REGION ADDRESS

SPATIAL PATTERNSSPATIAL PATTERNS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 The context for re-engineering 269

existing system’s country entity format into a model that maps business objects. At the
second stage, we re-engineer our (typically entity-based) conceptual patterns—in other
words, the ideas in our heads—into business objects and include them in the model.

Figure 12.2:
The two stages of
re-engineering

In this first example, we build up our understanding of how the re-engineering works, by
going through it in some detail. This takes up quite a lot of space and so is spread over
three chapters. In the first two chapters, we go through the first stage—entity format re-
engineering. In this first chapter, we re-engineer the elements of the country’s entity for-
mat. In the second chapter, we generalise the country’s re-used patterns. In the third
chapter, we go through the second stage—conceptual pattern re-engineering.

3 The context for re-engineering

We now get down to the nitty-gritty of entity format re-engineering. The first step is get-
ting a context, finding out what we are going to re-engineer. We know it is the country
entity, but we need to know more than this..

People can understand a lot about what a particular entity format is by looking at exam-
ples of its entities and their associated attributes. In this worked example, we use the
Partial Country Listing given in Table 12.1. This is the sort of ‘file listing’ a computer sys-
tem constructed using the entity paradigm would produce. Here, we are only interested

Re-Engineering
The Existing

Country
Entity-Format

Re-Engineering
Our Conceptual

Patterns For
Country

Country
Entity-
Format

Country Name Country Code

Germany DM

Italy IT

Japan JP

Turkey TK

United Kingdom UK

United States US

Table 12.1: Partial Country Listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
270 Chapter 12 Re-Engineering Country’s Entity Format

in the two name attributes shown in the listing; we ignore any other attributes country
may have. From Table 12.1, we can deduce that the relevant part of the country format
looks like Table 12.2

3.1 The re-engineering framework

When we start the re-engineering, we do not have to grow the new model from scratch.
We use a framework model or general lexicon as our starting point (see Chapter 11).
We do not need the full framework for this example; we only take the partial framework
shown in the object schema in Figure 12.3, and grow the country object model under-
neath.

Figure 12.3:
Partial framework
object schema

3.2 The systematic approach to re-engineering

The three steps in the systematic approach to re-engineering the country entity (type)—
one of the country entity format’s elements—are illustrated in Figure 12.4. Notice the
process starts with the country entity sign, not the country entity, and ends with a coun-
try model object, not the country object. This is because we are re-engineering informa-
tion; so we re-engineer from entity signs to object signs. The heart of the re-engineering
process is, however, entities, objects and their semantics, not their signs. Before we can
construct the object sign in the object model, we have to:

• Identify the entity that the entity sign refers to, and
• Re-engineer it into an object (or, in some cases, a number of objects).

Attribute Type #1 Attribute Type #2 Etc.

Country full name Country code -

Table 12.2: Country Entity Format

OBJECTS

OBJECT

EVENTS

EVENT

BODIES

BODY

CLASSES

CLASS

THINGS

THING

TUPLES CLASSES

TUPLES

TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering country entity type sign 271

Figure 12.4:
First stage – re-
engineering the
country entity

3.3 Following the ordering rules for re-engineering

We now follow the two simple rules for ordering the re-engineering of entity formats set
out in the previous chapter. The first rule applied to country is:

Re-engineer the country individual entity and entity type signs before their associ-
ated individual attribute and attribute type signs.

The second rule—for the country entity type—is:
Re-engineer a couple of the country individual entity signs and use the patterns to
re-engineer the country entity type sign.

4 Re-engineering country entity type sign

Following the rules, we start with the country entity type sign and select one of its entity
signs from the Partial Country Listing in Table 12.1. It does not matter which one,
because they should all exhibit country patterns. We pick the last entry in the table as
our first sign—the United States entity sign.

4.1 Re-engineering the first individual entity sign

This table entry is a record of a United States entity sign on our existing computer sys-
tem. We have no real problem finding the sign, it is the United States record on the
Country File. We now need to work out what individual entity this sign refers to.

4.1.1 Identifying the United States entity

As Figure 12.4 shows, at this stage we are working within the entity paradigm. In Chap-
ter 4 , we looked at how the substance paradigm’s semantics explained what individual
entity signs referred to. That they refer to individual entities constructed from an under-

COUNTRY
ENTITY

COUNTRY
OBJECT

ENTITY
SYSTEM

OBJECT
MODEL

ENTITY
DOMAIN

ENTITY PARADIGM OBJECT PARADIGM

OBJECT
DOMAIN

COUNTRY ENTITY RE-ENGINEERING PROCESS

IDENTIFY
COUNTRY

ENTITY

RE-ENGINEER
INTO COUNTRY

OBJECT

CONSTRUCT
COUNTRY

OBJECT SIGN

Country
Entity
Sign

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
272 Chapter 12 Re-Engineering Country’s Entity Format

lying primary substance, to which attributes are attached (illustrated in Figure 4.1). We
apply the explanation to this particular example. The United States individual entity sign
refers to the ‘primary substance’ of the country we call the United States. The primary
substance and its attributes, in some sense, make up the United States. This is shown
diagrammatically in Figure 12.5.

Figure 12.5:
United States pri-
mary substance

4.1.2 Re-engineering the United States object

We now re-engineer the country primary substance into a country object. In the object
paradigm, we see in four-dimensional terms, so we see the United States object as
occupying both space and time. The re-engineering is relatively simple. We take the
United States current three-dimensional extension—in entity paradigm terms, the posi-
tion or place attribute. We then follow the United States’ three-dimensional extension
back and forward in time, filling in a four-dimensional extension. This process is illus-
trated in Figure 12.6. The resulting four-dimensional extension is the United States
object.

Figure 12.6:
Four-dimensional
object, the United
States

To increase coherence, we need to find a connecting pattern between the United States
object and the framework objects (those shown in Figure 12.3). To do this we ask—
what type of object is the United States object? The answer is clear; it persists through
time and so is a body object. This gives us our pattern. There is a class–member pat-

Position

Size

etc.

refers to

UNITED
STATES

refers to

refers to

refers to

UNITED STATES
PRIMARY SUBSTANCE

ENTITY SYSTEMENTITY DOMAIN

Position

SizeU
N

IT
E
D

S
T
A

T
E
S

A
T

T
R

IB
U

T
E
S

etc.

TIM
E

Four-Dimensional
United States

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering country entity type sign 273

tern linking it to the framework’s bodies class; in other words, it is a member of the bod-
ies class. This introduces a second object; the class–member tuple constructed from
the two objects.

4.1.3 Constructing the United States object sign

We carry out the final step in re-engineering by constructing signs for the two objects.
We construct an individual body object sign for the United States object and a class–
member sign for the tuple object. The resulting model is shown in the schema in Figure
12.7. This also shows how we used a class–member tuple to graft the new United
States object onto the framework’s bodies class.

Figure 12.7:
United States
object schema

In Figure 12.7 the framework, application and operational levels are signed using the
shading convention described in Chapter 11 (and illustrated in Figure 11.6). The United
States sign is in the operational level. This is because the users of the system are
expected to decide what countries to set up on their system, and so whether to set up
the United States. Operational objects, like this one, naturally emerge during the re-
engineering. We eventually purge them when we produce an application version of the
model for the system designers to work on.

Figure 12.8:
Re-engineering
the existing sys-
tem’s United
States entity sign

UNITED
STATES

BODIES

BODY

UNITED STATES ENTITY SIGN RE-ENGINEERING PROCESS

IDENTIFY
UNITED STATES

ENTITY

RE-ENGINEER
INTO UNITED

STATES OBJECT

CONSTRUCT
UNITED STATES

OBJECT SIGN

UNITED STATES
ENTITY SIGN

ENTITY
SYSTEM

ENTITY PARADIGM OBJECT PARADIGM

ENTITY
DOMAIN

OBJECT
DOMAIN

OBJECT
MODEL

UNITED STATES
SUBSTANCE

UNITED STATES
OBJECT

UNITED STATES
OBJECT SIGN

United
States UNITED

STATES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
274 Chapter 12 Re-Engineering Country’s Entity Format

4.1.4 The re-engineering of the United States entity sign

We have now worked through the three steps of entity format re-engineering. We have
re-engineered the United States entity sign into the United States object sign. This is
shown in Figure 12.8. In sign terms, this might not look like much of a change, but, in
semantic terms, things in the domain have changed dramatically. These differences
emerge in the model as it captures the pattern of connections between objects.

Some people may find the analysis above far too detailed, thinking that we are wasting
time dealing with the obvious. They might think it is clear what the United States is;
though I suspect it may not be clear to many of them that it is a four-dimensional object.
However, it is important to recognise that we are shifting to a full blown object paradigm.
Remember that the whole point of a paradigm shift (particularly one as fundamental as
this) is that it makes us look at things in a new and different way. What we previously
thought clear and obvious now becomes suspect. We have immersed ourselves in the
entity paradigm for so many years that we will need to work hard to overcome the habits
and prejudices we have built up. Only careful and systematic analysis of exactly what
things are, as in this example, will keep us on the straight and narrow.

4.2 Re-engineering the second individual entity sign

Following the rule about re-engineering a couple of entity signs, we pick a second entity
sign and re-engineer it. We pick it from the partial listing of countries in Table 12.1. This
time we pick the United Kingdom sign. We follow the same pattern of re-engineering as
we used for the United States entity sign. Because the pattern is the same, the details
are not repeated here. We end up constructing a sign for the United Kingdom object
and including it in the object model. This gives us an object schema that looks like Fig-
ure 12.9.

Figure 12.9:
United Kingdom
object schema

Not surprisingly, it has the same pattern as the United States object schema in Figure
12.7. We now integrate the two schemas and get Figure 12.10. Because the individual
countries are only two of many, the class–member tuple sign to the partition box is par-
tial (shown by the small rectangle).

UNITED
KINGDOM

BODIES

BODY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering country entity type sign 275

Figure 12.10:
Merged United
States and United
Kingdom object
schema

4.3 Re-engineering the entity type sign

We are now ready to re-engineer the country entity type sign. We follow the same three
steps we used for the entity signs.

• We identify the country entity type the sign refers to.
• Then we re-engineer the country entity type into a country object.
• Then we construct a country sign in the object model for the country object.

We looked at what an individual entity sign referred to when we re-engineered the
United States entity sign earlier in this chapter. It referred to the primary substance to
which attributes attach. We now ask—what does the country entity type sign refer to?

Figure 12.11:
Country secondary
substance

In Chapter 3, we saw that the entity type sign refers to a secondary substance. One
that we can see as the sum of primary substances. Using this pattern, the country entity
type sign then refers to country secondary substance (shown in Figure 12.11). We can

UNITED
STATES

UNITED
KINGDOM

BODIES

BODY

COUNTRY
SECONDARY
SUBSTANCE

P
R

IM
A

R
Y

S
U

B
S
T
A

N
C

E
S

refers to

COUNTRY

ENTITY
DOMAIN

ENTITY
SYSTEM

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
276 Chapter 12 Re-Engineering Country’s Entity Format

see this as the sum of the primary substances of countries like the United States and
the United Kingdom.

We now need to re-engineer the entity type—the country secondary substance—into an
object. In Chapter 4 (on the logical paradigm), we looked at a pattern where secondary
substances evolved into classes. We use this pattern here and transform the country
secondary substance into the class of countries. Because the individual countries have
four-dimensional extensions, so does the class.

We now work out the pattern of structural interconnections with the existing model. The
countries class has as members the individual physical body objects: United States and
United Kingdom. It is a class; so, it is a member of the framework class, classes. Its
members are all physical body objects; so, it is a sub-class of the bodies class.

Now that we have re-engineered the class, we construct the countries class sign and
the signs for its patterns of structural connections in the object model. Figure 12.12
shows the results. Because we are working in the object paradigm’s notation, the coun-
tries class sign (unlike the entity type sign) differentiates between the name sign for the
class—countries—and the name sign for its members—country. Note that the countries
class is an application, rather than operational, level object—one that we will use to
specify the system.

Figure 12.12:
Countries object
schema

Figure 12.13 illustrates the overall re-engineering process for the entity type.

We step back and look at both the objects and the object model from outside using the
reference diagram in Figure Figure 12.14. There, we can see how the pattern of con-
nections between the countries class sign and other signs in the object model reflects
the pattern of connections between the objects.

The re-engineering of the country entity type and its associated entity is now completed.
This step-by-step walk through the process should have given you a clear idea of how
the systematic REV-ENG method works.

COUNTRIES

COUNTRY

UNITED
STATES

UNITED
KINGDOM

BODIES

BODY

CLASSES

CLASS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 277

Figure 12.13:
Re-engineering
the country entity
type

Figure 12.14:
Countries class
reference diagram

5 Re-engineering attribute type signs

We are now ready to start re-engineering the country entity format’s attribute type signs.
Both of these are names but, before we start, I warn you again that names work in a
very different way in the entity and object paradigms. Some of us are so acclimated to
the successful way they work in the entity paradigm that we are going to need to work
hard to get to grips with the new perspective—even though it is simpler.

COUNTRIES

COUNTRY

COUNTRY ENTITY-TYPE SIGN RE-ENGINEERING PROCESS

IDENTIFY
COUNTRY

ENTITY

RE-ENGINEER
INTO COUNTRY

OBJECT

CONSTRUCT
COUNTRY

OBJECT SIGN

COUNTRY
ENTITY-TYPE

SIGN

ENTITY
SYSTEM

ENTITY PARADIGM OBJECT PARADIGM

ENTITY
DOMAIN

OBJECT
DOMAIN

OBJECT
MODEL

COUNTRY
SUBSTANCE

COUNTRY CLASS
OBJECT

COUNTRY CLASS
OBJECT SIGN

Country

COUNTRY
SECONDARY
SUBSTANCE

COUNTRY
O

B
JE

C
T

M
O

D
E
L

O
B

JE
C

T
S

COUNTRIES

r
e
fe

r
s

t
o

r
e
fe

r
s

t
o

UNITED
STATES

UNITED
KINGDOM

r
e
fe

r
s

t
o

COUNTRIES

COUNTRY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
278 Chapter 12 Re-Engineering Country’s Entity Format

5.1 Re-engineering the country full name attribute type sign

We start the re-engineering with the country full name attribute type sign. The attribute
version of the second rule applies:

Re-engineer a couple of individual attribute signs and use the patterns to Re-engi-
neer their attribute type sign.

We need to pick individual attribute signs for our attribute type sign. We start by picking
the United States entity sign’s country full name attribute sign ‘United States’.

5.2 Re-engineering the first individual attribute sign

We again follow the three steps in our systematic approach. We start with the actual
attribute sign itself in the computer system. This is the full name field of the United
States record and contains the character string ‘United States’ (recorded in the first col-
umn of the last entry in Table 12.1).

5.2.1 An implicit relational attribute sign

This full name field is an attribute sign and so refers to an attribute, but identifying which
one is not straightforward. Although the attribute sign looks like a non-relational attribute
sign, it is actually an implicit relational attribute sign related to an implicit United States
full name entity sign (shown in Figure 12.15). It is not uncommon to find these implicit
signs when re-engineering. They are the result of trying to use the entity paradigm to
describe patterns that do not fit into its constrained structure. We re-engineer this
implicit relational attribute sign in two steps. We start by re-engineering the implicit
‘United States’ full name entity sign and then re-engineer the relational attribute.

Figure 12.15:
Implicit relational
attribute

5.2.2 United States full name entity

The ‘United States’ full name entity sign refers to the ‘United States’ full name entity.
This is not particularly informative; it is easier to understand what the entity is by work-
ing out what object it is re-engineered into. What object can this be? It cannot be a sin-
gle character string, such as the string in the full name field on the computer’s United
States record or the string in the last entry of the partial country listing in Table 12.1. It
somehow refers to both of these, as well as all other ‘United States’ character strings.
This gives us our clue—it is the class of these character strings—as shown in Figure
12.16.

UNITED
STATES

UNITED
STATES
FULL
NAME

UNITED STATES

FULL NAME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 279

Figure 12.16:
United States full
names class

To tie the class’s reference down, we need to tie down the reference of the members of
the class—in this case, the individual character strings. We need to see these as four-
dimensional objects, persisting through time. The individual character string objects cre-
ated by different ‘technologies’ have different characteristics. Characters in the written
strings produced by pen and paper technology persist through time together. For exam-
ple, the ‘U’ and ‘n’ of ‘United States’ exist at the same time, as shown in Figure 12.17.

Figure 12.17:
Example of a par-
ticular four-dimen-
sional written
United States full
name

Figure 12.18:
Example of a par-
ticular four-dimen-
sional spoken
United States full
name

Spoken characters in strings, the product of speech technology, have their characters
spread through time. In this case the ‘U’ exists before the ‘N’, as shown in Figure 12.18.

5.2.3 United States full names class

These four-dimensional objects are the members of the United States full name class.
Every time someone says, writes down or, most importantly for us, keys into a computer
system, the character string ‘United States’, and this names the United States; then the
character string belongs to the United States full names class. This analysis means that
in the object scheme of things, we read the sentence;

UNITED

STATESUNITED
STATES

Red

United

States

FULL
NAME

UNITED
STATES

UNITED STATES
FULL NAMES

TIM
E

UNITED STATESUNITED STATES

UNITED STATESUNITED STATES

TIM
E

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
280 Chapter 12 Re-Engineering Country’s Entity Format

The full name of the United States is ‘United States’

as
‘United States’ is a member of the United States full names class.

We now follow the same pattern as before and work out the structural connections for
the class object. We have already done some of the analysis; we have worked out
some of its members. Because the object is a class, it is a member of the framework
class, classes. We then construct the sign for the object and its patterns in the object
model. The result is shown in Figure 12.19.

Figure 12.19:
United States full
names object
schema

5.2.4 Full naming tuples class

We now start re-engineering the second part of the attribute—the implicit relational
attribute sign that points to the ‘United States’ full name entity sign. This refers to the full
names relational attribute that relates the United States substance to the United States
full names entity (shown in Figure 12.15). In Chapter 5 (where we introduced tuples),
we looked at the basic re-engineering pattern for relational attributes. It transforms them
into a couple belonging to a tuples class. Applying the pattern to this example, the rela-
tional attribute re-engineers into the couple <United States body object, United States
full names class> belonging to the country full naming tuples class. This is shown
graphically in Figure 12.20.

Figure 12.20:
The United States
full naming couple

UNITED
STATES FULL
NAMES

CLASSES

CLASS

'UNITED
STATES'

'UNITED

STATES'

THE
UNITED STATES
FULL NAMING

COUPLE

UNITED STATES
FULL NAMES

UNITED STATES

COUNTRY FULL
NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 281

We look for the tuples class and couple’s structural patterns. The tuples class is a class
of couples and so a sub-class of the framework class, tuples. We construct the signs for
the tuples class and couple and its structural patterns and include them in the object
model. The resulting object schema looks like Figure 12.21.

Figure 12.21:
United States full
naming tuples
object schema

You will have noticed that the United States full names class is classified as derived.
This is shown by the shaded grey triangle at the bottom left of the rectangle. It is defined
by the United States full naming couple. This is because a name is only a name if it
names something; without the naming couple it is not a name.

5.2.5 The basic naming pattern

The re-engineering of the attribute sign uncovered the tuples class that links the United
States to its full name class. But it has not fully explained what this object is and so we
cannot see the basic naming pattern clearly. We need to dig a bit deeper.

Even though the United States is connected to the full names class, and we call the con-
nection a naming pattern, we never actually use it to refer to the United States. What we
use is the naming pattern class’s members; for example, we say ‘United States’ names
the country the United States. This more particular naming pattern is shown in Figure
12.22.

Figure 12.22:
United States
naming pattern

se man yll uf

UNITED
STATES FULL
NAMES

COUNTRIES

COUNTRY

UNITED
STATES

fully named by

TUPLES CLASSES

CLASS

BODIES

BODY

COUNTRY FULL
NAMING TUPLES

UNITED STATES
FULL NAMING COUPLE

refers to

MODEL DOMAIN

A PARTICULAR
UNITED STATES NAME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
282 Chapter 12 Re-Engineering Country’s Entity Format

Every time we use a United States full name (a member of the United States full name
class), we get the same naming pattern. In object terms, this particular pattern trans-
lates into a couple object, with the country the United States and the character string
‘United States’ as components. This couple object belongs to the United States full
naming tuples class (shown in Figure 12.23). This is an example of the objects behind
the basic naming pattern.

Figure 12.23:
United States full
naming tuples
class

Every member of the United States full names class has the naming pattern shown in
Figure 12.22. This suggests a new and better way of re-engineering the full name rela-
tional attribute. Might it not be re-engineered into the United States full naming tuples
class, instead of the couple <United States body object, United States full name class>
we re-engineered earlier? This offers a much more satisfactory explanation of what is
going on.

Figure 12.24:
United States full
naming tuples
object schema

We work out the pattern of structural connections, construct the objects and revise the
object model. This gives us the object schema in Figure 12.24. The model shows that
the link between the United States body and the United States full names class is now a
tuples class rather than a couple. It is an unusual tuples class in that one of its links is to

AN INDIVIDUAL
UNITED STATES
FULL NAMING

COUPLE

UNITED STATES FULL
NAMING TUPLES

'UNITED
STATES'

COUNTRIES

COUNTRY

UNITED
STATES

UNITED
STATES FULL
NAMES

TUPLES CLASSES

CLASS

BODIES

BODY

UNITED STATES
FULL NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 283

an individual body object instead of to the more usual class’s member. You will have
noticed that the United States full names class is still classified as derived—shown by
the shaded grey triangle at the bottom left of the rectangle. This time it is defined by the
United States full naming tuples class.

5.2.6 Exemplar United States full name

The analysis is not yet complete; there is one last bit of investigation we need for the
naming pattern. We need to take a more accurate than usual look at how names refer.
This will make us revise a simple commonly held notion—that the signs in a model are
clearly separated from the things they refer to in the domain (shown in Figure 12.25).

Figure 12.25:
Simple view of
object model’s
separation from
the domain

This is an accurate enough view most of the time; but for the element of the name pat-
tern we are looking at now, it is a little too simplistic. Most of us assume that ideas are
mental and objects physical; so, assume that ideas and signs are totally separate from
the objects that they refer to. However, in the object paradigm, signs in the object model
are not necessarily mental. Furthermore (as we saw in Chapter 9 when we constructed
a (model)2 model (illustrated in Figures 9.39 and 9.40) signs are as much ‘objects’ as
the objects they refer to in the domain. In this scheme of things, there is, in principle, no
absolute separation between signs and objects. In fact, signs are objects—model
objects. So there is no reason why one of these model objects cannot be in both the
object model and the domain.

We can see an example of this if we accurately examine the United States full name
attribute again. The attribute is actually an example of a full name. In other words, it is
not only an example of the attribute type but also a sign for it. Mixing entity and object
domains, we can say the United States full name attribute sign (an element of the exist-
ing system) is a member of the United States full name class (an element of the
domain).

This is naming by example—a very simple and effective way of naming. It eliminates the
need to construct the ‘meaningless’ signs normally used in language. Coin-operated
food dispensers often use a similar system; for instance, the button for dispensing a
particular chocolate bar has one of the bars displayed behind the button. The advan-
tage of this way of naming is that there is less chance of misrepresentation. The dis-
pensed chocolate bars can easily be compared with the bar on display.

This is the motivation behind the United States full name attribute sign. When a charac-
ter string is keyed into the computer system, it can be compared with the sign’s charac-
ter string to determine whether it also belongs to the United States full name class.
Figure 12.26 illustrates the state of affairs. It also illustrates a new, more sophisticated
view of how the domain and the object model relate. The United States full names class

DOMAIN OBJECT MODEL

OBJECT refers to SIGN

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
284 Chapter 12 Re-Engineering Country’s Entity Format

is partly outside the object model and partly inside. This means the United States exem-
plar name is in both the domain and the object model; so, the domain and object model
are not distinct, they overlap.

Figure 12.26:
United States
exemplar full
name

One aspect of the United States full name attribute sign is that it is an exemplar name
for the United States entity. This means that it does not follow the normal pattern of re-
engineering. It cannot because the sign is also the entity and the entity is re-engineered
into an object that is also an object sign. So, in this case, the first and last steps of the
systematic re-engineering process are superfluous.

Figure 12.27:
United States
exemplar full
name object
schema

The sign in the object schema for the United States exemplar name needs to reflect its
special status as an example referring to a class. We do this in two ways. First, we
insert at the end of the name sign the text ‘[EXEMPLAR]’. And second, we put an arrow
over the class–member tuple sign linking the exemplar name to the sign of its class

EXEMPLAR
NAME

UNITED
STATES

Red

United

States

FULL
NAME

UNITED
STATES

[EXEMPLAR]

INSIDE OBJECT MODELOUTSIDE OBJECT MODEL

UNITED
STATES

UNITED STATES
FULL NAMES

refers to

UNITED
STATES FULL
NAMES

UNITED
STATES

[EXEMPLAR]

COUNTRIES

COUNTRY

UNITED
STATES

UNITED
STATES FULL
NAMES

TUPLES CLASSES

CLASS

BODIES

BODY

UNITED STATES
FULL NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 285

(shown in the object schema in Figure 12.27). You will have noticed that ‘United States
[EXEMPLAR]’ (like United States full name) is classified as derived, defined by its
exemplar class–member tuple. If something occupies the member place of the United
States full name exemplar class–member tuple, it must be an exemplar United States
full name.

5.3 Re-engineering the second individual attribute sign

We have only re-engineered one attribute for the country full name attribute type. Fol-
lowing the rules, we need to re-engineer a second before we re-engineer the attribute
type. We pick ‘United Kingdom’ from the partial listing in Table 12.1. We follow the same
re-engineering pattern as we used for the ‘United States’ full name attribute. This gives
us the object schema shown in Figure 12.28. Not surprisingly, this has the same pattern
as the United States object schema in Figure 12.27.

Figure 12.28:
United Kingdom
full names and full
naming tuples
object schema

The steps in the re-engineering process are not shown here because they are so similar
to the ones we used for the ‘United States’ full name attribute. When modelling for real,
it is tempting to miss out these steps and just re-construct the United States object
schemas substituting the United Kingdom. This misses the point of the process, which
is to check that the patterns are the same for both attributes before generalising them to
the attribute type. Working through a similar process is often tedious; but it is necessary
to confirm that the patterns are general across the attributes. I tend to find that the one
time I do not work through a similar pattern, Murphy’s law comes into operation. The
pattern contains important variations that I have to go back later to unearth.

UNITED
KINGDOM

[EXEMPLAR]

COUNTRIES

COUNTRY

UNITED
KINGDOM

UNITED
KINGDOM FULL
NAMES

TUPLES CLASSES

CLASS

BODIES

BODY

UNITED KINGDOM
FULL NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
286 Chapter 12 Re-Engineering Country’s Entity Format

5.4 Re-engineering the attribute type sign

We can now re-engineer the country full name attribute type. This follows a similar pat-
tern to the individual attribute sign, which was re-engineered into a number of related
objects. In other words, the attribute signs’ pattern is reflected at the attribute type level.

As with the full name attributes, we start by following the three steps in our systematic
approach. We take the attribute type sign in the computer system. This is the sum of the
full name fields of all the country records on the computer—including the United States
full name field and the United Kingdom full name field.

5.4.1 An implicit relational attribute type sign

As with the attribute signs, the first step of re-engineering this attribute type sign (identi-
fying the attribute type the sign refers to) is not straightforward. This is because the
attribute type sign is implicitly related (like the attribute signs) to a country full name
entity type sign (shown in Figure 12.29). This is, as before, the result of trying to use the
entity paradigm to describe patterns that do not fit into its constrained structure.

Figure 12.29:
Implicit relational
attribute type

5.4.2 Country full names class

Following the same pattern that we used at the attribute level, we start by re-engineer-
ing the implicit country full name entity sign. In the entity world, this refers to a country
full name entity. We now find out what object it is re-engineered into. The classic
re-engineering pattern for attribute types (which we looked at in Chapter 5) has the
attribute type transformed into the class of the objects that the individual attributes were
re-engineered into. This pattern applies here. The country full name attribute type re-
engineers into the country full names class. This is a class with the United States full
names class and the United Kingdom full names class as members.

These members are classes; so, country full names is a class of classes (shown in Fig-
ure 12.30). The entity paradigm cannot handle this pattern. It had to be distorted to fit
into the entity framework. It also involves a new way of seeing, one unfamiliar to most
people and one that treats the full names classes as objects and collects them into the
country full names class—a class of classes.

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

UNITED
STATES

UNITED
STATES
FULL
NAME

COUNTRY
FULL
NAME

COUNTRY

FULL NAME

UNITED STATES

FULL NAME

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 287

Figure 12.30:
Country full names
class

Figure 12.31:
Country full names
object schema

We increase coherence by recognising a structural pattern—in this case, a class–mem-
ber tuple to the framework class, classes. We can now carry out the third step and con-
struct the appropriate signs and include them in the object model, giving us the object
schema in Figure 12.31. The class–member sign to the partition box is partial because
there are other full names for other countries (for instance, Germany full names).

5.4.3 Country full naming tuples classes

Continuing to follow the attribute level pattern, we now re-engineer the relational
attribute type sign (shown in Figure 12.29), which points to the country full name entity
type sign. This refers to a country’s full name relational attribute type that relates the
country entity type to the country full name's entity type.

UNITED STATES
FULL NAMES

UNITED STATES
FULL NAMES

UNITED KINGDOM
FULL NAMES

UNITED KINGDOM
FULL NAMES

IN
F
O

R
M

-
A

T
IO

N
M

O
D

E
L

O
B

JE
C

T
S

COUNTRY
FULL NAMES

UNITED STATES

UNITED STATES

etc.

UNITED KINGDOM

UNITED KINGDOM

etc.

r
e
fe

r
s

t
o

COUNTRY
FULL NAMES

COUNTRY
FULL NAMES

CLASSES

CLASS

UNITED
STATES FULL
NAMES

UNITED
KINGDOM FULL
NAMES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
288 Chapter 12 Re-Engineering Country’s Entity Format

Figure 12.32:
Country full nam-
ing tuples classes

We apply the classic re-engineering pattern for attribute types from Chapter 5 again
and transform the relational attribute type into the class of the objects that the attributes
were re-engineered into. This is the class of all the individual country full naming tuples
classes, such as the United States full naming tuples (shown in Figure 12.32).

Figure 12.33:
Country full nam-
ing tuples classes
object schema

We identify its structural patterns. It has as members both the United States full naming
tuples and the United Kingdom full naming tuples. We construct signs for the objects.
This gives us the object schema in Figure 12.33. You may notice that country full nam-
ing tuples classes is a class of tuples classes, (in other words, a class of classes) and
so not a tuples class (which, by definition, has tuples as its members). This means that
country full naming tuples classes is related to both countries and country full names by
tuples classes of class places, such as country/full naming tuples. In addition, the coun-
try full names class (like its member classes) is classified as derived, defined by country
full naming tuples classes.

COUNTRY FULL
NAMING TUPLES CLASS

UNITED KINGDOM
FULL NAMING

TUPLES

UNITED KINGDOM
FULL NAMING

TUPLES

UNITED
KINGDOM

UNITED STATES
FULL NAMING

TUPLES

UNITED STATES
FULL NAMING

TUPLES

UNITED
STATES

UNITED
STATES FULL
NAMES

COUNTRY
FULL NAMES

UNITED
KINGDOM FULL
NAMES

TUPLES

COUNTRIES

COUNTRY

CLASSES

CLASS

TUPLES CLASSES

TUPLES

BODIES

BODY

UNITED
STATES

UNITED
KINGDOM

COUNTRY
FULL NAMING
TUPLES CLASSES

UNITED KINGDOM
FULL NAMING

TUPLES

UNITED STATES
FULL NAMING

TUPLES

COUNTRY/
FULL NAMING TUPLES

COUNTRY FULL NAME/
FULL NAMING TUPLES

fully named b y

fully named b y

se man yll uf

se man yll uf

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering attribute type signs 289

5.4.4 Exemplar country full names class

We then follow the third and final leg of the attribute level pattern and re-engineer exem-
plar country full names. We re-engineer this into the class constructed by collecting
together the individual exemplar full names—the class of exemplar country full names.
We work out its structural patterns and construct the appropriate signs in the object
model, giving us the object schema in Figure 12.34. This captures the exemplar pattern
at the class level.

Figure 12.34:
Exemplar country
full names object
schema

5.5 Re-engineering the country code attribute type sign

We have completed the re-engineering of the country full name attribute type. We now
start re-engineering the second attribute type, country code. This is a name and uses
the same basic naming pattern as country full names and so its re-engineering follows
the same pattern. In a real exercise, it would be important to follow the pattern through
step by step, no matter how tedious this felt; otherwise, important variations would be
missed. However, for this worked example there is no need to do it.

The results of the re-engineering are the object schemas shown in Figure 12.35 for
country codes, Figure 12.36 for country coding tuples classes and Figure 12.37 for
exemplar country codes. These follow the patterns for country full names shown in Fig-
ures 12.31, 12.33 and 12.34. You will note that in Figure 12.36 the country codes class
is classified as derived (it is defined by the country coding tuples classes). Similarly the
exemplar country codes, in Figure 12.37, is classified as derived (defined by the coun-
try code exemplar member tuples class).

UNITED
STATES FULL
NAMES

UNITED
STATES

[EXEMPLAR]

CLASSES

CLASS

COUNTRY
FULL NAMES

EXEMPLAR
COUNTRY FULL
NAMES

TUPLES

COUNTRIES

COUNTRY

TUPLES CLASSES

TUPLES

BODIES

BODY

UNITED
STATES

UNITED STATES
FULL NAMING

TUPLES

COUNTRY/
FULL NAMING

TUPLES
COUNTRY FULL NAME/
FULL NAMING TUPLESCOUNTRY

FULL NAMING
TUPLES CLASSES

COUNTRY FULL NAME
EXEMPLAR MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
290 Chapter 12 Re-Engineering Country’s Entity Format

Figure 12.35:
Country codes
object schema

Figure 12.36:
Country coding
tuples classes
object schema

5.5.1 Re-engineering the naming pattern

Re-engineering these name attribute types should have given us some idea of the dis-
tortions that the entity paradigm is forced to make to some patterns to fit them into its
framework. It should also give some idea of how accurate we need to be to see how to
unwind the distortions. Country has taken us from one end of the re-engineering spec-
trum to the other. Re-engineering the country entity type was simple and straightfor-
ward; whereas, re-engineering its name attribute types was far from straightforward. It
needed careful analysis to reveal the underlying naming patterns.

UNITED
STATES
CODES

UNITED
KINGDOM
CODES

COUNTRY
CODES

CLASSES

CLASS

TUPLES

COUNTRY
CODES

COUNTRIES

COUNTRY

CLASSES

CLASS

TUPLES CLASSES

TUPLES

BODIES

BODY

UNITED
STATES

UNITED
KINGDOM

COUNTRY
CODING TUPLES
CLASSES

UNITED
STATES CODES

UNITED
KINGDOM
CODES

UNITED KINGDOM
CODING TUPLES

UNITED STATES
CODING TUPLES

coded by

coded by

sedoc

sedoc

COUNTRY/
CODING TUPLES

COUNTRY CODE/
CODING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Basic elements of the re-engineering completed 291

Figure 12.37:
Exemplar country
codes object
schema

6 Basic elements of the re-engineering completed

We have now completed the direct re-engineering of the elements of the country entity
format. We have constructed an object model that reflects the re-engineered objects.
However, we have not completed the first stage yet. We still need to take advantage of
any opportunities for generalising the objects. We do this in the following chapter.

UNITED
STATES
CODES

CLASSES

CLASS

COUNTRY
CODES

EXEMPLAR
COUNTRY
CODES

TUPLES

COUNTRIES

COUNTRY

TUPLES CLASSES

TUPLES

BODIES

BODY

UNITED
STATES

UNITED STATES
CODING
TUPLES

COUNTRY/
CODING
TUPLES

COUNTRY CODE/
CODING TUPLES

COUNTRY CODE
EXEMPLAR MEMBERCOUNTRY

CODING
TUPLES CLASSES

US
[EXEMPLAR]

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
292 Chapter 12 Re-Engineering Country’s Entity Format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 13
Generalising Country’s Re-Used

Patterns

1 Introduction

2 Generalising re-used patterns

3 First stage of the re-engineering completed

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
294 Chapter 13 Generalising Country’s Re-Used Patterns

1 Introduction
In the previous chapter, we re-engineered the elements of the existing system’s entity
format directly into an object model. In this chapter, we complete the first stage of the re-
engineering by generalising the patterns re-used in the modelling.

2 Generalising re-used patterns

In the previous chapter, we focused on the direct re-engineering of the entity format into
objects. We now focus on a less direct form of re-engineering—generalisation. This is
essential to any good re-engineering because it leads to the compacting that makes the
model simpler and more powerful.

In practice, the direct re-engineering and generalisation would go on hand in hand, but I
have kept them separate here because it is easier to examine them on their own.

We now work through how we generalise the example. Even this early on in the re-engi-
neering, there are opportunities for generalisation. A good indication of an opportunity
for generalisation is patterns of objects that have been re-used in the modelling. In this
worked example, there are three obvious candidates:
1. The re-use of the country full names pattern in the re-engineering of country codes.
2. The re-use of the country full naming tuples classes pattern in the re-engineering of

country coding tuples classes.
3. The re-use of the exemplar country full names pattern in the re-engineering of

exemplar country codes.

2.1 Generalising country full names and codes

We not only re-used the same pattern in the re-engineering of country full names and
country codes; the two objects’ connecting patterns are also very similar. This indicates

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Generalising re-used patterns 295

that they are ripe for generalisation. We now generalise them to the country names
superclass, illustrated in Figure 13.1.

Figure 13.1:
Generalised coun-
try names object
schema

It is tempting to put the country full names and country codes classes into a partition.
But we should not because, in theory, they could overlap. For instance, we might decide
to give a country the same full name and code. There is no law that says we cannot. We
might decide to make ‘UK’ both the full name and code of the United Kingdom. Then
United Kingdom names would be a member of both the country full names and country
codes classes (shown in Figure 13.2). There is a general tendency to be too quick in
applying partitions. So it is worthwhile, as I illustrate here, to double-check that the
classes are definitely distinct.

Figure 13.2:
Identical United
Kingdom names
and codes object
schema

2.2 Generalising country full naming and coding tuples classes

The country coding and full naming tuples classes also shared similar connecting pat-
terns. So we generalise them to a country naming tuples classes super-class. To give a

COUNTRY
NAMES

COUNTRY
FULL
NAMES

COUNTRY
CODES

CLASSES

CLASS

'UK'

COUNTRY
FULL
NAMES

COUNTRY
CODES

UNITED
KINGDOM FULL
NAMES &
CODES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
296 Chapter 13 Generalising Country’s Re-Used Patterns

good view of the generalised pattern, we put this and the country names generalisation
onto one object schema, as shown in Figure 13.3.

Figure 13.3:
Integrated gener-
alised country
names/naming
tuples
classes object
schema

Note that this generalisation has left the country full names and codes with no depend-
ent connections. Therefore, we have made them redundant, as shown by the black tri-
angular redundant icons. Furthermore, we have also classified the new country names
as derived—defined by country naming tuples classes.

Figure 13.4:
Generalised exem-
plar country
names object
schema

2.3 Generalising exemplar country full names and codes

The exemplar country full names and codes are in a similar situation. We generalise
them to an exemplar country names super-class and get the object schema in Figure

COUNTRY
CODES

COUNTRY
FULL NAMES

COUNTRY
FULL NAMING
TUPLES CLASSES

COUNTRY
CODING TUPLES
CLASSES

COUNTRY
NAMES

BODIES

BODY

COUNTRIES

COUNTRY

TUPLES TUPLES CLASSES

TUPLES

CLASSES

CLASS

COUNTRY
NAMING TUPLES
CLASSES

COUNTRY/
 NAMING TUPLES

COUNTRY NAME/
 NAMING TUPLES

EXEMPLAR
COUNTRY
CODES

EXEMPLAR
COUNTRY FULL
NAMES

COUNTRY
NAMES

COUNTRY
FULL NAMES

EXEMPLAR
COUNTRY
NAMES

COUNTRY
CODES

CLASSES

CLASS

TUPLES

COUNTRY NAME
EXEMPLAR MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 First stage of the re-engineering completed 297

13.4. We sign the exemplar country full names and codes as overlapping for the same
reason as the country full names and codes. They are also derived and now have no
dependent connections. We therefore classify them and their connecting tuples as
redundant, changing their grey derived icon to black. Furthermore, the new generalised
exemplar country names is classified as derived.

2.4 First stage application level object model

Having done this generalisation, we can go one step further and compact the model. If
we purge the model of redundant objects, then we can fit the whole application level
model into the single object schema shown in Figure 13.5. Sometimes people now see
the possibility of generalising further to a general names class. There is such an object,
but we leave it until a later example, where we have the patterns from two naming
tuples classes to generalise from.

Figure 13.5:
First stage applica-
tion level object
model

This shows how generalisation, along with re-use, are important factors in the compact-
ing that leads to simpler, more powerful, object models. Without generalisation the more
accurate object models would be bigger and so unwieldy.

3 First stage of the re-engineering completed

We have now completed the first stage of the REV-ENG re-engineering process. We
have done quite a lot. From a re-engineering perspective, we have transformed the
implicit spatial and naming patterns in the country entity format into an explicit object
model. From a learning perspective, we have made ourselves reasonably familiar with
the first stage of the approach. We now know how to deal with the application of the
approach to both straightforward and difficult entity formats.

In the following chapter, we carry out the second and final stage of the re-engineering of
this country example. The focus shifts from the signs in the existing system to the con-
ceptual patterns for country in our heads. We look at how we re-engineer these into the
object model.

COUNTRY
NAMES

COUNTRY/
EXEMPLAR NAME

COUNTRIES COUNTRY
NAMING TUPLES
CLASSES

COUNTRY/
NAMING TUPLES

COUNTRY NAME/
NAMING TUPLES

COUNTRY
CODING TUPLES
CLASSES

COUNTRY FULL
NAMING TUPLES
CLASSES

COUNTRY NAME
EXEMPLAR MEMBER

EXEMPLAR
COUNTRY
NAMES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
298 Chapter 13 Generalising Country’s Re-Used Patterns

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 14
Re-Engineering Our Conceptual

Patterns for Country

1 Introduction

2 Finding conceptual patterns

3 Character strings patterns

4 Nested countries pattern

5 More accurate nested countries patterns

6 Current countries

7 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
300 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

1 Introduction
This is the third of the three chapters that take us through the systematic process of re-
engineering country patterns. This process has two stages (illustrated in Figure 14.1).
In the previous two chapters, we worked through the first stage of the process, re-engi-
neering the country entity format into a business object model. In this chapter, we work
our way through the second and final stage of the process, re-engineering our concep-
tual patterns for country into the object model.

Figure 14.1:
Second stage of
the systematic re-
engineering proc-
ess

The entity paradigm (and so entity oriented computer systems) is too constrictive to
hold many of the patterns for country. And it captures a distorted version of many of
those that it does hold. The object paradigm does not have these restrictions; so, in the
first stage, we re-engineer undistorted versions of the patterns into the object model.

In the second stage, we re-engineer the patterns in our conceptual systems (in other
words, our brains). These are not as restricted as entity oriented computer systems and
so hold a much richer store of patterns. This provides more of an opportunity for the
power and flexibility of the object paradigm to come into play and so the construction of
more accurate, simpler and functionally richer object models.

1.1 The three re-engineering steps

As outlined in Chapter , the re-engineering in the second stage follows similar steps to
the first stage, with a different initial step. We do the following:

• Find a relevant conceptual country pattern,
• Identify the entity it refers to,
• Re-engineer it into an object pattern, and then
• Construct signs for the pattern in the model.

These steps are shown graphically in Figure 14.2.

Re-Engineering
The Existing

Country
Entity-Format

Re-Engineering
Our Conceptual

Patterns For
Country

Country
Entity-
Format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Finding conceptual patterns 301

Figure 14.2:
The four re-engi-
neering steps in
the second stage

Conceptual patterns, by their nature, are not very accessible. We cannot bring them up
on a screen or print them out (as we can for entity formats of a computer system). So an
important first step is finding relevant conceptual patterns. In this chapter, we look at
some useful techniques to stimulate our thinking and tease them out.

Once we have found the conceptual patterns, we make them as formal as the entity for-
mats and then re-engineer them into objects. Most people’s conceptual patterns are
only loosely based on substance semantics. This leads to a tendency to ‘refer to’ things
informally; or, in other words, it is not always clear what the conceptual patterns refer to.
So, even though our brains effortlessly use these patterns, trying to make them formal
requires some thought. And even then we cannot be sure that what we have formalised
is either complete or correct.

We illustrate this process of re-engineering our conceptual patterns with these four
examples:

• Character strings patterns,
• Nested countries patterns,
• More accurate nested countries patterns, and
• Current countries.

2 Finding conceptual patterns

The first step in this second stage is finding the relevant conceptual patterns. This gives
it a different flavour. The first stage is more analytic; whereas, the second stage is more
investigative. For example, the entity formats of the existing system are reasonably for-
mal and public—certainly when compared with our conceptual patterns. The first stage
is largely a matter of analysing what the entity format refers to. By contrast, the second
stage involves an open-ended search for relevant conceptual patterns.

CONCEPTUAL PATTERN RE-ENGINEERING PROCESS

ENTITY OBJECT

OUR CONCEPTUAL
SYSTEM

ENTITY PARADIGM OBJECT PARADIGM

OBJECT
MODEL

ENTITY
DOMAIN

OBJECT
DOMAIN

IDENTIFY
ENTITY

IDENTIFY
CONCEPTUAL

PATTERN

RE-ENGINEER
INTO AN
OBJECT

CONSTRUCT
OBJECT

SIGN

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
302 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

2.1 Useful, relevant conceptual patterns

Before we look at the techniques for investigation, we need to clarify which patterns
count as useful and relevant. In a new paradigm, the old ways of working are often
turned on their head. What were sensible and solid ways of working become counter-
productive. What were impractical ways of working become pragmatic and realistic.
This means that when we shift to the new paradigm we have to unlearn the old ways of
working and relearn new ones. This is true for the way in which we investigate our con-
ceptual patterns.

Traditionally, system builders apply an informal cost–benefit analysis to what they
include within the scope of their system and so what they are going to model. When
they come across a complex area, they ask themselves whether the additional costs of
automating it are justified by increased benefits. Typically, they apply a kind of parato
rule. In most cases, automating 20 percent of the areas in the business delivers 80 per-
cent of the benefits. More often than not, the 20 percent contains the simple everyday
processes and the 80 percent contains the complex anomalous exceptions. In this situ-
ation, most system builders aim to maximise value for money. Their analysis shows that
the cost of automating the complex areas is too high, given the benefits. So they focus
on the 20 percent of the areas with a high payback and leave the complex areas to be
handled manually.

Behind this traditional way of thinking lies the following two assumptions:
• A complex area is implemented with complex code, and
• The benefits of analysing it only arise in the implementation of that complex

code.

In the entity oriented environment of traditional system building, this ‘operational’ way of
thinking is sensible. However, in an object-oriented environment, we take an ‘under-
standing’ viewpoint and these two assumptions no longer hold. A complex area no
longer has to be implemented in complex code. An area only looks complex because
we have a complex conceptual pattern for it. Business object modelling can transform
that complex conceptual pattern into a much simpler and easier to understand object
pattern. The cost of implementing this new simple pattern is no more than for other sim-
ple areas.

Furthermore, in a re-engineering, the benefits of analysing a complex conceptual pat-
tern are often no longer limited to the area in which it was found, but spread across the
whole system. A complex pattern in an entity paradigm tends to be rich in implicit, re-
usable patterns—that is what makes it complex. So when we re-engineer and general-
ise the pattern, it ends up not only simpler, but re-usable. It can be applied not only to
entity formats in the existing system that are not part of the original complex area, but
also to new patterns that are not in the existing model. This means that if we want to
assess the benefits of analysing a pattern, we need to think in terms of the improve-
ments its re-engineering will make to the overall model.

General re-usable patterns are what give an object model power. The re-vamped cost–
benefit analysis now suggests that, when business object modelling, we should seek
out the interesting complex areas that will give us these general re-usable patterns. This

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Character strings patterns 303

represents a change in attitude to complex anomalous exception cases. Instead of
excluding them from the analysis, we now welcome them as a source of useful patterns.

Another reason for welcoming these complex conceptual patterns is that they turn out to
be difficult to find. In this chapter, we look at examples of techniques for finding them as
well as how to re-engineer them into the model. In so doing, we grow our object model
for spatial patterns.

3 Character strings patterns

We find our first missing conceptual pattern, character strings, using a simple technique
and by conceptually reviewing the object model. This involves taking a careful look at
the model and mentally comparing it with the conceptual patterns in our heads.

3.1 Conceptually reviewing the object model

Most people seem to find it quite easy to look at an object schema and naturally com-
pare it with their conceptual patterns. This often starts happening during the first stage
of the re-engineering. A modeller working on a schema will just look at it and see some-
thing wrong—the pattern of object signs do not fit together. This will be easy to see:

• First, because the object patters are described using visual patterns, some-
thing the human brain is very good at dealing with.

• Second, because the patterns in the object schemas are explicit and public.

When we review the object schemas, we might find that it does not have one of our con-
ceptual patterns. Or, we might find that the model has the pattern, but it is different in
important respects from our conceptual pattern.

When we analyse these, they usually provide us with a fruitful source of re-usable pat-
terns. The differences may highlight inaccurate patterns in the model. This should not
be surprising because, at this stage, the object model is a only a transformation of the
existing system, and so still contains some of its faults. We can revise these inaccurate
patterns, making them more re-usable. The missing conceptual patterns can often use-
fully be re-engineered, added to the object model, and generalised.

It is important to recognise that the review is a two way process. While we are enhanc-
ing the object model, it is also enhancing the way we see the business. This is particu-
larly obvious when we review schemas produced by other people. At first glance, their
find patterns may look wrong. (This must have already happened to some people with
the schemas in earlier chapters.) Sometimes our intuition is trustworthy and the model’s
pattern need changing. Other times it is our intuition that is wrong and its patterns need
changing. The object schema then ‘teaches’ us a new, more accurate, way of looking at
the business. (This ‘teaching’ aspect of schemas can be particularly useful when the re-
engineered business paradigm needs to be explained to people outside the re-engi-
neering team.) By the end of the review process, our conceptual patterns and the object
model’s patterns should have converged. We and the object model should share a com-
mon way of seeing the business.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
304 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

3.2 Finding the missing character strings concept

We now work through an example of reviewing an object schema, looking for a missing
concept. Look at Figure 14.3; it shows the object schema we re-engineered for United
States full names (it is a copy of Figure 12.19). When we worked through the re-engi-
neering, I referred to United States full names as a ‘class of character strings’. As I
wrote the phrase ‘character strings’, it must be a concept in my conceptual system. As
you read it, it must also be in your conceptual system. But the object ‘character strings’
does not appear anywhere in the object model. It is an example of a missing concept.

Figure 14.3:
United States full
names object
schema

In this instance, the missing concept refers to a more general class object than the
United States full names class. It is quite common for people to find that the first stage’s
object schemas are less general than their conceptual patterns. The question here is
whether it is worthwhile including the more general concept of character strings in the
model. In this case, not only is character strings a really re-usable general class, but it
also captures an important part of our understanding of what a name is.

Figure 14.4:
The character
strings class

UNITED
STATES FULL
NAMES

CLASSES

CLASS

'UNITED
STATES'

'UNITED

STATES'

O
B

JE
C

T
S

CHARACTER
STRINGS

UNITED STATES
FULL NAMES

UNITED KINGDOM
FULL NAMES

UNITED STATES

UNITED STATES

etc.

UNITED KINGDOM

UNITED KINGDOM

etc.

AND

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Character strings patterns 305

3.3 Re-engineering the concept into an object

We now move onto the second step of the process—re-engineering the character
strings conceptual pattern into an object pattern. This is relatively straightforward. Char-
acter strings is clearly a class and a super-class of United States full names. It, there-
fore, has all the members of the United States full names class as members. In fact, it
has all character strings as members (illustrated in Figure 14.4).

As well as re-engineering the missing concept, we need to find the re-engineered
object’s connecting patterns with other objects in the model. We want to maximise
coherence and sense; so, we try and find all the relevant connecting patterns. This
involves quite a few classes: United States full names object to start with, but also coun-
try names and exemplar country names as well as a new character string classes class.

3.4 Character strings and United States full names

We look for character strings’ connecting patterns with the United States full names
class first. The character strings class is, as we have already mentioned, a super-class
of the United States full names class so we explicitly make the connection. Character
strings is also a class, so it is a member of the framework class, classes. We make this
connection as well. This gives us the schema in Figure 14.5.

Character strings is the class of all character strings; so, it includes character strings
other than United States full names, even those that are not country names or names at
all. We can show this in the model by picking a character string at random, ‘AND’ say,
and recognising it as a member of the character strings class. The object schema for
this looks like Figure 14.5.

Figure 14.5:
Character strings
and United States
full names

'AND'

CLASSES

CLASS

CHARACTER
STRINGS

UNITED
STATES FULL
NAMES

'UNITED
STATES'

'UNITED

STATES'

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
306 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

3.5 Character strings and country names class

Now we look for the connecting patterns between character strings and country names.
There is a direct connection and a number of indirect connections. The direct connec-
tion is a super-sub-tuple-class. Members of the country names class, such as United
States full names, are sub-classes of the character strings class. This direct connection
is the super–sub-class of tuples shown in Figure 14.6. The indirect connections are the
tuple members of this class. Country names has as descendant members, classes such
as United States full names and United Kingdom full names. These are, in turn, sub-
classes of the character strings class. These examples of indirect connections are
shown in Figure 14.6.

Figure 14.6:
Character strings
and country
names

Figure 14.7:
Character strings
and exemplar
character strings

3.6 Character strings and exemplar character strings

The character strings class suggests a generalisation of exemplar country names that
provides us with another connecting pattern. Exemplar country names are character
strings; for example, ‘United States [EXEMPLAR]’ full name is clearly a character string.
So, if United States full names can be generalised to character strings, why can’t exem-

CHARACTER
STRINGS

COUNTRY
NAMES

UNITED
STATES FULL
NAMES

UNITED
KINGDOM FULL
NAMES

COUNTRY NAME/
CHARACTER STRING
SUPER-SUB-CLASS

EXEMPLAR
COUNTRY
NAMES

CHARACTER
STRINGS

UNITED
STATES FULL
NAMES

UNITED
STATES

[EXEMPLAR]

AND
[EXEMPLAR]

'AND'
CHARACTER
STRINGS

EXEMPLAR
CHARACTER
STRINGS

COUNTRY
NAMES

COUNTRY NAME/
CHARACTER STRING
SUPER-SUB-CLASS

EXEMPLAR
CHARACTER STRING

MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Character strings patterns 307

plar country names also be generalised to exemplar character strings, and then up to
character strings?

The answer is, it can, which we do now. We construct an exemplar character strings
class that is a super-class of exemplar country names and a sub-class of character
strings. The ‘United States [EXEMPLAR]’ full name and the ‘AND [EXEMPLAR]’ charac-
ter string are both members of this class, though ‘United States [EXEMPLAR]’ full name
is only a distant member.

These connecting patterns are shown in Figure 14.7.

3.7 Character strings and character string classes

There is another connecting pattern between character strings and country names, one
that involves a new class object—character string classes. This is an example of a use-
ful type of class, the power class. A power class is the class of all sub-classes of a
class. These classes are a common feature in mathematical set theory, where they are
known as power sets and defined as the set of all sub-sets of a set.

The power class of the character strings class is the class of all sub-classes of the char-
acter strings class; or, in other words, the class of all classes of character strings. The
connections between a class and its power class are strong. By definition, the members
of the power class are sub-classes of the ‘powered’ class. From this, we can deduce
that powered classes’ members are members of the power classes’ members. Signs for
these connecting patterns are constructed for our example, giving us the object schema
in Figure 14.8. This same pattern is repeated for all power classes. You will have
noticed that the character string classes class is derived from its power class tuples
class. This is signed as a power class by the addition of a new power class component
icon to the tuples class icon.

Figure 14.8:
Character string
classes object
schema

Figure 14.8 shows a direct connecting pattern between this new character string
classes and character strings. There is also an indirect connecting pattern by way of the
country names class. The country names class has classes of character strings (for
example, United States full names) as members. This makes it a class of classes of
character strings. It, obviously, does not contain all the potential classes of character
strings. This makes it a sub-class of the character string classes class. This gives us the
indirect connecting pattern between character strings and character string classes
shown in Figure 14.9.

Composite
Power Class
Sign

Power Class
Component Sign

CHARACTER
STRINGS

CHARACTER
STRING
CLASSES

CHARACTER STRINGS CLASS
CLASS-MEMBER TUPLES

CHARACTER STRINGS
SUPER-SUB-CLASS TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
308 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

Figure 14.9:
Character strings
and character
string classes

You should now begin to see how this process of generalising and tying together the
objects with connecting patterns is starting to make the model webby. As the model
grows and develops, it will become webbier and webbier.

4 Nested countries pattern

We now look at the next example of a missing conceptual pattern-nested countries.
First, we look at how we might find that it is missing.

4.1 Looking at conceptual patterns in other ‘data’

Reviewing the model’s schemas is not the only way of finding missing conceptual pat-
terns. We can also look at the patterns in ‘raw data’. Lists are particularly useful sources
of ‘raw data’ because they can be compared with the model methodically. Once you
start looking, lists are reasonably easy to find. One useful source is international organ-
isations, such as the International Standards Organisation (ISO). We could this compre-
hensive list of countries in this example.

Organisations often capture an aspect of their conceptual patterns in written descrip-
tions. Different organisations with different purposes tend to describe different aspects
of the conceptual patterns. So when we compare their views with the object model
(which reflects the view of the re-engineered system), we usually throw up a relevant
missing or inaccurate pattern. This is then re-engineered and included in the model.

4.1.1 Automating the checking

For some classes, the lists of data are too large for a visual line by line comparison with
the model or each other. In these situations I have found it useful to load the lists onto a

UNITED
STATES FULL
NAMES

COUNTRY
NAMES

COUNTRY NAME/
CHARACTER STRING
SUPER-SUB-CLASS

CHARACTER
STRINGS

CHARACTER
STRING
CLASSES

CHARACTER STRINGS
SUPER-SUB-CLASS TUPLES

CLASSES

CLASS

EXEMPLAR
CHARACTER
STRINGS

UNITED
STATES

[EXEMPLAR]

EXEMPLAR
COUNTRY
NAMES

EXEMPLAR
CHARACTER STRING

MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Nested countries pattern 309

computer (if they are not already there) and let the computer do the comparison. It can
automatically and accurately spot any differences or missing items. A particularly useful
way of doing this is to build a validation system based on the object model (described in
a little more detail in Chapter 18). Loading the data onto this system soon reveals any
differences between the patterns of the data and the model.

I usually then use a technique that takes advantage of the human brain’s ability to rec-
ognise spatial patterns. I generate a number of different versions of the lists sorted by
various criteria. Patterns then begin to emerge from the page. Sometimes these are
interesting. They may be genuinely new patterns or old ones we are so familiar with that
we did not make them explicit and so did not include them in the model.

4.2 Missing nested countries pattern

A conceptual pattern is missing from our country model—nested countries. We can find
it by comparing lists of countries with the countries class in the model. First, we note any
differences and omissions and then try to determine whether they are relevant. This
would, at some stage, identify some missing nested countries, such as those shaded in
Table 14.1.

England, Scotland, Northern Ireland and Wales are all countries. They are all nested
countries because they are part of the United Kingdom. However, many computer sys-
tems, including the one that we have just re-engineered, do not recognise them as
either nesting or countries. They assume that countries are mutually exclusive because
they are used as a basis for summarising figures, such as sales or exposures.

We can see this by assuming that one of these systems contains records of all the
countries listed in Table 14.1. As it allocates each item to only one country, it is faced
with a dilemma when summarising sales and exposures. If it allocates an English sale
to the England figures, it would not appear in the United Kingdom summary figures. If,
on the other hand, it allocates the sale to the United Kingdom figures, it would not
appear in the England summary figures. In either case, one set of summarised figures
would be wrong. There is no way out until the system can recognise that one country is
part of another. Then the system would be able to allocate a sale to England and
include England’s totals in the United Kingdom’s summary figures.

Country Names Country Codes

England EG

Northern Ireland NI

Scotland SC

United Kingdom UK

Wales WL

Table 14.1: Selected partial country listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
310 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

We now re-engineer the conceptual pattern for nesting. It turns out to be an example of
a familiar pattern—the whole–part pattern. The nesting pattern is re-engineered as cou-
ples of the whole and part countries belonging to the nested countries whole–part tuples
class (illustrated in Figure 14.10). The corresponding object schema is in Figure 14.11.
Notice that this shows the nested countries whole–part tuples class is redundant. It is a
sub-class of the framework class, whole–part tuples and defined by the countries class.

Figure 14.10:
Nested countries
whole–part tuples

Figure 14.11:
Nested countries
whole–part tuples
object schema

England
is part of

United Kingdom

Scotland
is part of

United Kingdom

Wales
is part of

United Kingdom

Northern Ireland
is part of

United Kingdom

NESTED COUNTRIES
WHOLE-PART TUPLES

WHOLE- PART TUPLES

UNITED
KINGDOM

ENGLAND

WALES

SCOTLAND

NORTHERN
IRELAND

COUNTRIES

COUNTRY

NESTED COUNTRIES
WHOLE-PART TUPLES

THINGS
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Nested countries pattern 311

4.3 Direct benefits

Conceptual patterns, such as the countries nesting pattern, that have been omitted from
entity systems in an attempt to keep them simple are often not only fertile sources of
re-use but also bearers of direct benefits. This is the case here. One direct benefit was
discussed earlier: once the pattern is implemented in the system, figures can be accu-
rately summarised for nested countries. There are also other direct benefits. We look at
two examples now:

• Bank of England reporting, and
• Bank holidays.

4.3.1 Bank of England reporting

Different institutions have different objectives and so look at countries in different ways.
We expect them to have different views of countries. However, we often need a system
with an accurate enough country pattern to handle these different views. Here is one
example where the nested country pattern was needed.

Many years ago I worked on an international banking system where the list of ISO coun-
tries was used as a basis for country reporting to Head Office. When we started building
a Bank of England (BOE) regulatory reporting module, we discovered a problem. While
ISO regarded the UAE (United Arab Emirates) as a country, the Bank of England
needed a more detailed analysis. It wanted its reporting for the UAE broken down into
Abu Dhabi and Dubai (UAE’s two main emirates)—without a summary at UAE level.
The system only had a flat, simple, mutually exclusive, pattern for countries and so
could not accommodate both views. In the end, despite all the attendant problems, we
decided the easiest way out was to work around the problem and set up a separate
BOE countries file. This meant countries had to be set up and maintained twice—once
on the main countries file and again on the BOE countries file. If the system had had an
accurate enough pattern, one that could handle nested countries, the problem would
never have arisen.

4.3.2 Bank holidays

We sometimes only realise we have a problem when a way of solving it becomes avail-
able. The same sort of thing applies here. Once we are aware of what the pattern
should be, we begin to see how not having it leads to small but irritating glitches in the
design of systems. Consider this example.

Without the pattern for nesting countries, accurate recording of bank holidays (which we
re-engineer in Chapter 17) is not possible. For example, the United Kingdom, England,
Scotland, Wales and Northern Ireland all have their own bank holidays. Recording all of
these without the pattern for nested countries can lead to a similar problem to the sales
figures summaries discussed earlier.

For example, a number of international banking systems (like the system in the example
above) only have a flat, mutually exclusive pattern for countries. Most users set up the
United Kingdom (and not England) as a country and record both United Kingdom and

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
312 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

English bank holidays as United Kingdom bank holidays. Because most these of the
banks have UK counterparties who operate from the City of London, they have no prob-
lems with this setup.

However, the system is less satisfactory for those few international operations based in
Edinburgh, Scotland. They have counterparties in the City of London and so have to
contend with both Scottish and English bank holidays. However they set up these holi-
days, they have problems. If they set up them up as bank holidays in the United King-
dom, then on English (non-Scottish) bank holidays the system would tell them that they
were closed when they were open. On Scottish (non-English) bank holidays, it would
tell them that their London-based counterparties were closed when they were open. If
the system had had the nested countries pattern, this problem would probably never
have arisen.

4.4 Potential for re-use

For us, a far more important consideration than these direct benefits is the opportunity
for generalisation and re-use that the nested country pattern provides. A similar pattern
occurs with nested regions, and both of these patterns seem to be merely parts of a
larger nested area pattern (we re-engineer this more general pattern in Chapter 15).
This means that if we get the nesting pattern right here (or as right as we can), then, in
the later examples, we can re-use it with little or no effort.

5 More accurate nested countries patterns

In the nested countries example, we re-engineered the pattern we found in the list
directly into the model. It turns out that this pattern is not sufficiently accurate for our
object model. We need spatial patterns that can be re-used, not just within this object
model, but across a range of object models. For this to happen, the nested countries
pattern needs to be more accurate. We now identify and re-engineer the nested country
conceptual patterns that will give us a sufficiently accurate model.

5.1 Scottish Act of Union

One of the things that normally strikes people at some stage in the re-engineering of
country is that the nested countries (or country whole–part) tuples class does not cap-
ture the nesting pattern accurately enough. It is easiest to spot the inaccuracy in a par-
ticular example—for instance, Scotland’s Act of Union. In Britain, when talk about
devolution for Scotland surfaces (which it does regularly), we are reminded that, before
the 1707 Act of Union, Scotland was not part of Great Britain.

This is a good example of the problem with the nested countries tuples. At one time,
Scotland was not part of Great Britain and at another time it was. Is Scotland a part of
Great Britain or not? With our understanding of objects as four-dimensional objects per-
sisting through time (and, in particular, the knowledge of the semantics of modelling
temporal parts gained in Chapter 8), we can see the answer. It has a similar pattern to

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 More accurate nested countries patterns 313

Chapter ’s chairman example (illustrated in Figure 8.18). The part-of connection is not
between countries at all, but between a temporal part of a country—what we might call
a country stage—and a country.

Seeing in terms of country stages, we say that the stage of Scotland before 1707 is not
a part of Great Britain and the stage of Scotland after 1707 is a part of Great Britain; the
stage is nested in the country. It’s perhaps easier to see these objects in the space-time
map in Figure 14.12. From this we can construct the schema of re-engineered objects
in Figure 14.13.

Figure 14.12:
Space-time map
for 1707 Scottish
Act of Union

Figure 14.13:
1707 Scottish Act
of Union object
schema

It is tempting to add more to the schema in Figure 14.13. There is obviously a ‘next
stage’ connection between Scotland’s two stages. Furthermore, it seems reasonable to
connect these two stages to the 1707 Scottish Act of Union event with a before stage
tuple and an after stage tuple. At a more general level, an event such as this needs an
agent to initiate it. I have left all these out to keep the example simple.

GREAT
BRITAIN

GREAT BRITAIN'S
CREATION

SCOTLAND(?-1707)'S
COMPLETION

SCOTLAND(1707-?)'S
CREATION

ENGLAND
AND

WALES

1707
SCOTTISH

ACT OF UNION

SCOTLAND

ENGLAND AND
WALES(1546-1707)

ENGLAND AND
WALES(1707-?)

SCOTLAND(1707-?)SCOTLAND(?-1707)

merged by

segre m

created by

setaerc

GREAT
BRITAIN

ENGLAND
AND WALES

SCOTLAND
(?-1707) SCOTLAND

SCOTLAND
(1707-?)

1707 SCOTTISH
ACT OF UNION

TEMPORAL
WHOLE-PART TUPLES

PRE/POST CONDITION TUPLES

THINGS
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
314 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

However, the figures do reveal some cause and effect connections of the kind we
looked at in Chapter 8. In Aristotelian terms, both Scotland and England–and–Wales
are material causes of the Act of Union event. They exist both before and after the event
and contain a part of the event. Great Britain is a final cause. It starts with the Act of
Union event and its creation event is part of the Act of Union event.

5.2 Welsh Act of Union

We need to re-engineer another example to check that we have captured the patterns
correctly. We use Wales as the example. It went through a similar Act of Union from
1536 to 1543 (for simplicity sake we assume it is 1543). This created the country Eng-
land–and–Wales, which, as Figure 14.12 shows, was subsequently merged with Scot-
land to create Great Britain. Figure 14.14 shows a space-time map for the Welsh Act of
Union. It has the same pattern as the Scottish Act of Union. From this we can construct
the object schema shown in Figure 14.15; this is again similar to Scotland’s.

Figure 14.14:
Space-time map
for 1543 Welsh Act
of Union

Figure 14.15:
1543 Welsh Act of
Union object
schema

ENGLAND
AND

WALES

WALES

1543
WELSH

ACT OF UNION

ENGLAND

WALES (?-1543) WALES (1543-?)

ENGLAND (1543-?)ENGLAND (?-1543)

merged by

segre m

created by

setaerc

ENGLAND
AND WALES

ENGLAND

WALES
(?-1543) WALES

WALES
(1543-?)

1543 WELSH
ACT OF UNION

TEMPORAL
WHOLE-PART TUPLES

PRE/POST CONDITION TUPLES

THINGS
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 More accurate nested countries patterns 315

The possibilities for re-use of this pattern should be becoming clearer. It looks as though
it will apply to changes in other types of area, such as region. We shall see in Chapter
15 how we re-use this pattern to model countries joining the European Community
(EC).

5.3 Class level Acts of Union pattern

As we are now reasonably sure of the pattern, we can raise it to the class level. The
nested country pattern at the class level involves both countries and country stages. So
we combine the two into a single countries-and-stages class to act as one of the place
classes for the whole–part tuples class, as shown in Figure 14.16. As with Figure
14.11, the sub-class of whole–part tuples (in this case, country/stage whole–part tuples)
is redundant, defined by the countries and stages class. When it is purged, the individ-
ual whole–part tuples, such as <Scotland (1707–?), Scotland> will become nearest sub-
classes of whole–part tuples. You will notice that two of the three individual country/
stage whole–part tuples are classified as temporal–whole–part tuples.

Figure 14.16:
Countries and
stages object
schema

At the class level, the Act of Union pattern is between the Acts of Union’s events class
and the countries class, as shown in Figure 14.17. In a real re-engineering, we would
capture the cardinalities of the tuples to give us a more complete and accurate descrip-
tion of the pattern.

SCOTLAND

GREAT
BRITAIN

COUNTRIES

COUNTRY

SCOTLAND
(1707-?)

SCOTLAND
(?-1707)

WHOLE-PART TUPLES

COUNTRIES
AND STAGES

COUNTRY/STAGE
WHOLE-PART TUPLES

THINGS

TEMPORAL WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
316 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

Figure 14.17:
Acts of Union
object schema

6 Current countries

This look at historic events may have suggested to some people an important pattern
missing from the model. It does not yet describe which countries and country stages are
current, so it cannot tell us whether a country is now part of another country. We re-
engineer this pattern.

This involves using the dynamic now and current tuples classes that we examined in
Chapter 8 (illustrated in Figure 8.28). The ‘current’ country or country stage occupies,
along with the now class, the places in a current tuple. We capture this pattern using a
sub-class of the current tuples class—the country/stage current tuples class—as shown
in Figure 14.18. Notice that this class is redundant—defined by the countries and
stages class.

Figure 14.18:
Country/stage
current tuples
object schema

COUNTRIES

COUNTRY
by

 created by

segre m

GREAT
BRITAIN

ENGLAND
AND WALES

SCOTLAND

ENGLAND

WALES

1707 SCOTTISH
ACT OF UNION

1543 WELSH
ACT OF UNION

ACTS OF
UNION

ACTS OF
UNION

merged

creates

COUNTRY MERGING
TUPLES COUNTRY CREATING

TUPLES

COUNTRIES
AND STAGES

CURRENT TUPLES

UNITED
KINGDOM

WALES
(?-1543)

SCOTLAND
(1707-?) SCOTLAND

COUNTRY/STAGE CURRENT TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Summary 317

This current pattern, along with the merging and dividing patterns in nested country
stages, is a sophisticated way of modelling countries. It is also becoming more relevant
in a world where, for example, USSR, Czechoslovakia and Yugoslavia have relatively
recently divided into their constituent parts.

7 Summary

We have now completed all the tasks we are set out to do in this second stage of the
re-engineering. The previous two chapters have given you a good feel for how patterns
in the existing system are re-engineered into an object model. This chapter has given
you a good feel for how the model is enhanced by re-engineering conceptual patterns
that are missing from, or constrained in, the existing system. It has also given you a
sense for the kind of accurate understanding of the patterns that is needed, and how
this can be captured in an object model.

Between them, the three chapters have illustrated the systematic nature of the re-engi-
neering process. It has been worked through in some detail. In the examples in later
chapters, we shall forgo this detail to get a better overall view. In the next chapter we
move onto the next worked example in this group of spatial patterns—region.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
318 Chapter 14 Re-Engineering Our Conceptual Patterns for Country

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 15
Re-Engineering Region

1 Introduction

2 Re-engineering the region entity formats of the existing system

3 Re-engineering our conceptual patterns for region

4 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
320 Chapter 15 Re-Engineering Region

1 Introduction
In the last three chapters, we re-engineered our first example of a spatial pattern, coun-
try. In this chapter, we re-engineer our second example, region (see Figure 15.1). We
currently have the beginnings of an object model for spatial patterns. Re-engineering
region enhances this. In the next chapter, we re-engineer the third and final example,
address, which completes the model.

Figure 15.1:
Region, second of
three examples of
spatial patterns

Because we are now familiar with the patterns for the systematic re-engineering proc-
ess, in this and future examples, we do not work our way through every step. This not
only helps us to take an overall view, it means we move quickly and avoid monotony.
With region, we follow the systematic two-stage process for re-engineering. We:

• Re-engineer the region entity formats of the existing system, and
• Re-engineer our conceptual patterns for region.

2 Re-engineering the region entity formats of the existing system

Region is, in many respects, similar to country; so, we re-use its pattern of re-engineer-
ing. This means that there is potentially an opportunity to generalise across country and
region, which we will look into later.

As with the country re-engineering, we follow the standard rules for re-engineering the
entity formats:

• Re-engineer the individual entity and entity type signs before their associ-
ated individual attribute and attribute type signs.

• Re-engineer a couple of individual entity (attribute) signs and use the pat-
terns to re-engineer their entity-(attribute)-type sign.

We start with the region entity signs, and then move onto their attribute signs: region full
name and region code.

COUNTRY REGION ADDRESS

SPATIAL PATTERNSSPATIAL PATTERNS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 321

2.1 Re-engineering the region entity type sign

Like before, we familiarise ourselves with the entity type by looking at a list of its individ-
ual entities, such as the partial listing of regions in Table 15.1. As with country, we are
only interested in the two name attributes shown in the listing, so we ignore region’s
other attributes. We can deduce from Table 15.1 that the part of the region format we
are interested in looks like Table 15.2.

2.2 Re-engineering region entity signs

We follow the rules and start by re-engineering a couple of entities for the entity type.
We need to start with an entity; so, we select one from the partial listing of regions in
Table 15.1; we pick the North America entity. This re-engineering has the same pattern
as the United States in the country example. Following this gives us the object schema
in Figure 15.2. Not surprisingly, this has the same shape as the United States schema
in Figure 12.7.

Figure 15.2:
North America
object schema

We now re-engineer another entity. We pick Europe from the partial listing of regions in
Table 15.1. We follow the same pattern that we used for United Kingdom in the country

Region Name Region Code

Europe EU

Far East FE

Middle East ME

North America NA

Table 15.1: Partial region listing

Entity type Attribute type #1 Attribute type #2 Etc.

Region Region full name Region code -

Table 15.2: Region entity format

NORTH
AMERICA

BODIES

BODY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
322 Chapter 15 Re-Engineering Region

example and this gives us the object schema in Figure 15.3—with the same shape as
Figure 12.9.

Figure 15.3:
Europe object
schema

Like the country example (see Figure 12.10), we merge the two schemas and get Fig-
ure 15.4. It should be becoming clear how re-using patterns can simplify the re-engi-
neering process. Even though we need to retrace each of the steps to confirm that the
patterns are the same shape, it still makes the whole process much simpler.

Figure 15.4:
Merged North
America and
Europe object
schema

Figure 15.5:
Regions object
schema

EUROPE

BODIES

BODY

BODIES

BODY

NORTH
AMERICA

EUROPE

REGIONS

REGION

BODIES

BODY

CLASSES

CLASS

NORTH
AMERICA

EUROPE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 323

2.3 Re-engineering the entity type sign

The re-engineering of the two individual regions reveals similar patterns; so, we use
them (and the country entity type pattern) as a basis for re-engineering the region entity
type. We get the object schema shown in Figure 15.5; as you have by now come to
expect, this is the same shape as the corresponding schema for the countries object in
Figure 12.10.

2.4 Re-engineering region full name attribute type sign

The re-engineering of the two region attribute type signs follows the same pattern as the
country example. We follow the rules and start by re-engineering individual attributes
and build up to the attribute type.

2.4.1 Re-engineering the attribute signs

We start with the entity North America’s full name attribute, ‘North America’. Following
the country pattern, we get the object schema in Figure 15.6. This is the same pattern
as Figure 12.27, a part from character string classes, which was re-engineered later.
We included it in this schema to bind the objects more closely together.

Figure 15.6:
North America full
naming tuples
object schema

We check the patterns by re-engineering another attribute. We pick ‘Europe— Europe’s
full name attribute. Again we follow the same country pattern, giving us the object
schema in Figure 15.7. As with Figure 15.6, the only difference between this and its
country equivalent is the inclusion of character string classes.

TUPLES

NORTH
AMERICA

[EXEMPLAR]

REGIONS

REGION

NORTH AMERICA
FULL NAMING TUPLES

NORTH
AMERICA

NORTH
AMERICA FULL
NAMES

CHARACTER
STRING
CLASSES

BODIES

BODY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
324 Chapter 15 Re-Engineering Region

Figure 15.7:
Europe full naming
tuples object
schema

2.4.2 Re-engineering the attribute type sign

Following the rules and the country pattern, we now re-engineer the region full name
attribute type sign into the region full names class and the region full naming tuples
classes. We end up with the object schema in Figure 15.8, which shows the same pat-
tern as Figure 12.33.

Figure 15.8:
Region full naming
tuples classes
object schema

TUPLES

EUROPE
[EXEMPLAR]

REGIONS

REGION

EUROPE
FULL NAMING TUPLES

EUROPE

EUROPE FULL
NAMES

CHARACTER
STRING
CLASSES

BODIES

BODY

TUPLES

REGION
FULL NAMES

REGIONS

REGION

TUPLES CLASSES

TUPLES

BODIES

BODY

NORTH
AMERICA

EUROPE

REGION FULL
NAMING TUPLES
CLASSES

NORTH
AMERICA FULL
NAMES

EUROPE FULL
NAMES

EUROPE
FULL NAMING

TUPLES

NORTH AMERICA
FULL NAMING

TUPLES

REGION/
FULL NAMING TUPLES

REGION FULL NAME/
NAMING TUPLES

CHARACTER
STRING
CLASSES

fully named by

fully named by

fullynames

fullynames

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 325

2.5 Re-engineering region code attribute type sign

The region code attribute type follows both the country pattern and the region full name
pattern (in Figure 15.8). We go straight to the final object schema (shown in Figure
15.9).

Figure 15.9:
Region coding
tuples classes
object schema

2.6 Generalising within region

Now that we have re-engineered the entity formats, we exploit the opportunities for gen-
eralisation. These fall into two groups:

• Within region, and
• Across region and country.

The first group shares the same generalisation patterns as the country example. The
second group, which ranges across both the region and country sections of the model,
as based on the generalisation of region and country into geo-political area.

We now look at the first group. There are generalisation patterns for:
• Region names,
• Exemplar region names, and
• Region naming tuples classes.

2.6.1 Generalising to region names

Following the country re-engineering pattern, we generalise region full names and
region codes into region names (shown in the schema in Figure 15.10.)

TUPLES

EUROPE
CODES

REGIONS

REGION

TUPLES CLASSES

TUPLES

BODIES

BODY

NORTH
AMERICA

EUROPE

REGION
CODING TUPLES
CLASSES

NORTH
AMERICA
CODES

EUROPE
CODES

EUROPE
CODING
TUPLES

NORTH AMERICA
CODING
TUPLES

REGION/
CODING TUPLES

REGION CODE/
CODING TUPLES

CHARACTER
STRING
CLASSES

coded by

coded by

codes

codes

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
326 Chapter 15 Re-Engineering Region

Figure 15.10:
Generalised region
names object
schema

2.6.2 Generalising to region naming tuples classes

We follow the country pattern and generalise region full naming and coding tuples
classes into region naming tuples classes (shown in the schema in
Figure 15.11). Now that we have the general region naming tuples classes, we have
also generalised the region full naming and coding tuples classes class places up the
super–sub-class hierarchy to region name/naming tuples and region/naming tuples. We
have also classified region full names and codes as redundant. We can now, if we wish,
purge them, compacting the model.

Figure 15.11:
Generalised region
naming tuples
classes object
schema

REGION FULL
NAMES

REGION
NAMES

REGION
CODES

CHARACTER
STRING
CLASSES

CLASSES

CLASS

REGION
NAMING TUPLES
CLASSES

CHARACTER
STRING
CLASSES

REGION
FULL NAMES

REGION
NAMES

REGION
CODES

BODIES

BODY

TUPLES CLASSES

TUPLES

REGIONS

REGION

TUPLES

REGION
CODING TUPLES
CLASSES

REGION
FULL NAMING
TUPLES CLASSES

REGION/
NAMING TUPLES

REGION NAME/
NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 327

2.6.3 Generalising to exemplar region names

We follow the pattern for exemplar country names (shown in Figure 13.4) and general-
ise exemplar region full names and codes into exemplar region names. We also classify
exemplar full names and codes as redundant. This gives us the schema in Figure
15.12.

Figure 15.12:
Generalised exem-
plar region names
object schema

2.7 Generalising across region and country

Because we used the same patterns to re-engineer the entity formats of both regions
and countries, an opportunity potentially exists to generalise across country and region.

2.7.1 Generalising to geo-political areas

The opportunity is real. Country and region can be generalised to a super-class,
geo-political area. To help us see the generalisation more clearly we look at the schema
before and after generalisation (shown in Figures 15.13 and 15.14).

Figure 15.13:
Before general-
ised regions and
countries object
schema

BODIES

BODY

CLASSES

CLASS

REGIONS

REGION

COUNTRIES

COUNTRY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
328 Chapter 15 Re-Engineering Region

Before the generalisation, countries and regions are both separately connected to the
framework level objects, classes and bodies. After the generalisation, geo-political
areas is connected to these framework level objects, with regions and countries con-
nected to geo-political areas.

Figure 15.14:
After generalised
regions and coun-
tries object
schema

There is one final bit of re-engineering with regard to what a region is. It is really no
more than a geo-political area that is not a country. This means it is derived from the
country class. We reflect this in the object schema in Figure 15.14. Regions cannot be
classified as redundant because it still has a number of connecting patterns depending
on it, such as region naming tuples classes and region names. When we have general-
ised these, we will classify it as redundant.

2.7.2 Generalising to geo-political area names

This generalisation of countries and regions to geo-political areas creates further oppor-
tunities for generalising their connecting patterns. Where countries and regions have
similar connecting patterns, these can now be generalised into a single higher level
connecting pattern for geo-political areas. We do this for the following connecting pat-
terns:

• Geo-political area names,
• Geo-political area full naming and coding tuples classes,
• Exemplar geo-political area names, and
• Geo-political area naming tuples classes.

We start by generalising region and country names into geo-political area names. The
result is shown in Figure 15.15. This generalisation pattern is not new. It is exactly the
same shape as the generalisation of country full names and codes to country names in
Figure 13.1 (and so the generalisation of region full names and codes to region names
in Figure 15.10). The region and country names are classified as derived. Later on,
when we re-engineer their naming tuples classes, removing their dependent connec-
tions, we will classify them as redundant.

BODIES

BODY

CLASSES

CLASS

GEO-
POLITICAL
AREAS

REGIONS

REGION

COUNTRIES

COUNTRY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 329

Figure 15.15:
Generalised geo-
political area
names object
schema

2.7.3 Generalising geo-political area full naming and coding tuples classes

As the object model now stands, we still use separate full naming and coding tuples
classes for country and region. It makes sense for us to generalise each of these up to
a single class at the geo-political area level. This is the next step in moving the patterns
for ‘naming’ from countries and regions up to the geo-political area level.

We generalise the region and country full naming tuples classes first. The result is
shown in Figure 15.16. Then we follow the same pattern and generalise the region and
country coding tuples classes. The result is shown in Figure 15.17. As you can see, the
generalisation of the country and region level tuples classes to geo-political area level
has enabled us to classify them as redundant.

Figure 15.16:
Generalised geo-
political area full
naming tuples
classes object
schema

REGION
NAMES

GEO-
POLITICAL
AREA
NAMES

COUNTRY
NAMES

CLASSES

CLASS

CHARACTER
STRING
CLASSES

REGION
FULL NAMES

COUNTRY
FULL NAMES

COUNTRIES

REGIONS

COUNTRY
FULL NAMING
TUPLES CLASSES

REGION
FULL NAMING
TUPLES CLASSES

BODIES

BODY

GEO-POLITICAL
AREAS

GEO-POLITICAL
AREA FULL
NAMING TUPLES
CLASSES

TUPLES CLASSES

TUPLES

TUPLES

GEO POLITICAL AREA/
FULL NAMING TUPLES

GEO POLITICAL AREA
FULL NAME/

FULL NAMING TUPLES GEO-POLITICAL
AREA FULL
NAMES

CHARACTER
STRING
CLASSES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
330 Chapter 15 Re-Engineering Region

Figure 15.17:
Generalised geo-
political area cod-
ing tuples classes
object schema

2.7.4 Generalising to exemplar geo-political area names

We can generalise exemplar names to the geo-political area level, as shown in Figure
15.18

Figure 15.18:
Generalised exem-
plar geo-political
names object
schema

2.7.5 Generalising to geo-political area naming tuples classes

Finally we generalise to geo-political area, naming tuples classes from the geo-political
area full naming tuples classes and geo-political area coding tuples classes (shown in
Figure 15.19). This has a similar pattern to the naming tuples classes generalisation

REGION
CODES

COUNTRY
CODES

COUNTRIES

REGIONS

COUNTRY
CODING TUPLES
CLASSES

REGION
CODING TUPLES
CLASSES

GEO-POLITICAL
AREA CODING
TUPLES CLASSES

BODIES

BODY

GEO-POLITICAL
AREAS

TUPLES CLASSES

TUPLES

TUPLES

GEO-POLITICAL
AREA CODES

CHARACTER
STRING
CLASSES

GEO-POLITICAL AREA/
CODING TUPLES

GEO-POLITICAL
AREA CODE/

CODING TUPLES

EXEMPLAR
REGION
NAMES

EXEMPLAR
COUNTRY
NAMES

REGION
NAMES

GEO-POLITICAL
AREA EXEMPLAR
NAMES

GEO-POLITICAL
AREA NAMES

COUNTRY
NAMES

TUPLES

GEO-POLITICAL AREA NAME
EXEMPLAR MEMBER

CHARACTER
STRING
CLASSES

CHARACTER
STRINGS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 Re-engineering the region entity formats of the existing system 331

schemas for country and region. Following the region pattern (shown in Figure 15.11),
we classify the codes and full names objects redundant.

Figure 15.19:
Generalised geo-
political area nam-
ing tuples classes
object schema—1

We can also follow a different generalisation route to the same geo-political area nam-
ing tuples classes, by generalising the country and region naming tuples classes. This
gives us the object schema in Figure 15.20. With the generalisation to geo-political
area names, we classify the lower level region and country names redundant. Our clas-
sification of the region naming tuples classes object as redundant means that the
regions object no longer has any dependent connections; so, we have also classified it
as redundant.

Figure 15.20:
Generalised geo-
political area nam-
ing tuples classes
object schema—2

GEO-
POLITICAL
AREA CODES

BODIES

BODY

TUPLES

GEO-POLITICAL
AREA CODING
TUPLES CLASSES

GEO-
POLITICAL
AREAS

GEO-POLITICAL
AREA FULL
NAMING TUPLES
CLASSES

TUPLES CLASSES

TUPLES

GEO-POLITICAL
AREA NAMING
TUPLES CLASSES

GEO-
POLITICAL
AREA NAMES

GEO-POLITICAL
AREA FULL
NAMES

CHARACTER
STRING
CLASSES

GEO-POLITICAL
AREA NAME/

NAMING TUPLES
GEO-POLITICAL AREA/

NAMING TUPLES

REGION
NAMES

COUNTRY
NAMES

COUNTRIES

REGIONS

GEO-POLITICAL
AREA NAMING
TUPLES CLASSES

BODIES

BODY

GEO-POLITICAL
AREAS

TUPLES CLASSES

TUPLES

TUPLES

REGION
NAMING TUPLES
CLASSES

COUNTRY
NAMING TUPLES
CLASSES

GEO-POLITICAL
AREA NAMES

CHARACTER
STRING
CLASSES

GEO-POLITICAL
AREA NAME/

NAMING TUPLES
GEO-POLITICAL AREA/

NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
332 Chapter 15 Re-Engineering Region

The generalisation has significantly compacted the model. The application level now
has only eleven non-redundant objects. These can all be fitted onto one schema—Fig-
ure 15.21. You may notice that the character strings patterns are not included in this
schema; this is because they are not part of the first stage re-engineering. They were
initially constructed as part of the second stage of the country re-engineering.

Figure 15.21:
First stage applica-
tion level object
schema

2.8 Re-engineering the region entity formats

This completes the first stage—re-engineering the existing system’s region entity for-
mats. The generalisation of the names and region patterns to the geo-political level is a
good illustration of how patterns from previous re-engineerings are re-used to both sim-
plify the re-engineering process and provide opportunities for generalisation.

The example has generated high levels of generalisation, re-use and compacting. What
is also interesting is seeing the large number of patterns that have been re-used from
the re-engineering of country.

It also shows quite clearly that the re-engineering of the entity formats is not just a trans-
lation of the existing entity patterns into an object semantics. For instance, you will not
find the patterns for the comprehensive view of countries and regions as geo-political
areas, and the general view of names across all three, in the existing entity system. The
systematic re-engineering process takes patterns from an existing entity system and
produces a more general object model.

3 Re-engineering our conceptual patterns for region

We now move onto the second stage of the re-engineering—capturing our conceptual
patterns for region. The previous chapter’s country example provided us with an illustra-
tion of the process for investigating our conceptual patterns. It showed us the steps that
we need to go through to identify interesting ones and the process of re-engineering
them into the object model.

If this was a ‘real’ re-engineering, and not an exercise, we would go through a full inves-
tigation of all region’s conceptual patterns. Instead, we are just going to look at how the
nesting and stages patterns re-engineered in the country example can be re-used on
region.

GEO-POLITICAL AREA/
EXEMPLAR NAME

GEO-
POLITICAL
AREAS

COUNTRIES

GEO-POLITICAL
AREA NAMING
TUPLES CLASSES

GEO-
POLITICAL
AREA NAMES

GEO-POLITICAL
AREA EXEMPLAR
NAMES

GEO-POLITICAL AREA/
NAMING TUPLES

GEO-POLITICAL
AREA NAME

EXEMPLAR MEMBER

GEO-POLITICAL
AREA CODING
TUPLES CLASSES

GEO-POLITICAL
AREA FULL
NAMING TUPLES
CLASSES

GEO-POLITICAL
AREA NAME/

NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-engineering our conceptual patterns for region 333

We apply country’s two patterns to region. Then (as with the patterns in the first stage of
region’s re-engineering), we generalise them and their corresponding country patterns
up to the geo-political areas level. It turns out that all these patterns can be generalised
into a single geo-political areas pattern.

3.1 Nested regions

When we re-engineered country’s nesting pattern in Chapter 14 (illustrated in Figure
14.11, I noted that it looked as though it could be re-used for other types of areas. It can
be; we now look at two examples:

• Region nested within region, and
• Country nested in region.

We start off, as we did in the country example, by assuming that the individual nesting
patterns are between individual regions and countries—not stages. We do not have
region’s stages pattern until we re-engineer it in the next section.

3.1.1 Region nested in region

We start with the region nested in region pattern. The original sample of regions we
listed in Table 15.1 are mutually exclusive; they do not nest. In fact, most computer sys-
tem’s regions pattern assumes that regions do not nest. We came across a similar
assumption when we re-engineered country’s nesting pattern. Both assumptions are
made for the same reason; the systems use both countries and regions as hooks to
summarise figures. Typically, countries provide the first level of summarisation, regions
the second.

However in ‘reality’ we can and do have nested regions, just as we can and do have
nested countries. For the re-engineering, we take a revised sample of regions, one that
provides us with examples of nesting. This is given in Table 15.3. The new regions are
shaded.

Region Name Region Code Nesting in Region

Europe EU

European Community EC

Far East FE

Middle East ME

North America NA

South America SA

Western Europe WE Europe

Table 15.3: Revised partial region listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
334 Chapter 15 Re-Engineering Region

When we re-engineer the Western Europe nesting in Europe pattern in Table 15.3, we
get the object schema in Figure 15.22. This has the same pattern as nested country
whole–part tuples (shown in Figure 14.11). As in the nested country pattern, the nested
region whole–part tuples is redundant, derived from the regions class.

Figure 15.22:
Region nesting in
region

3.1.2 Country nested in region

We now turn our attention to the nesting pattern from country to region. This pattern is
likely to be an existing system pattern. Many computer systems, certainly in my experi-
ence, connect countries to regions. Normally their country entity format has a ‘belonging
to region’ attribute type that relates each country to one region—like the one shown in
Table 15.4.

If we update the original Partial Country Listing (Table 12.1) with the ‘new’ attribute
type, we get the extended partial country listing in Table 15.5.

If we re-engineer this, we get the, by now familiar, nesting tuples pattern, this time
between the countries and regions classes (shown in the schema in Figure 15.23). You
may have noticed that the country nested in region whole–part tuples class is shown as
derived—rather than redundant as in the earlier versions of the nesting pattern (for
example, Figure 15.22). This is because the tuple class has additional information in its
cardinality faithfully reflecting the constraints in the entity format in Table 15.4. The car-
dinality linking it to countries is constrained to optional-to-one; in other words, each
country can only ‘belong to’ one region. This is because (as we discussed in some

NESTED REGION
WHOLE-PART TUPLESREGIONS

REGIONS

EUROPE
WESTERN
EUROPE

THINGS
WHOLE-PART TUPLES

Entity Type Attribute Type #1 Attribute Type #2 Attribute Type #3 Etc.

Country Country name Country code Belonging to region -

Table 15.4: Revised country entity format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-engineering our conceptual patterns for region 335

detail in Chapter 3) attributes, such as ‘belonging to region’ cannot reflect ‘many-to-
many’ connections.

Figure 15.23:
Country nested in
region object
schema

If you look carefully at the country listing in Table 15.5 and the region listing in Table
15.3, you should be able to spot how the entity format constraint has made the listing
incomplete. Something is missing for Germany, Italy and the United Kingdom. They are
not only part of Europe but also part of the European Community.

One simple workaround that may spring to mind is to make the European Community
(EC) part of Europe (this gives a tree structure). But the example has been constructed
so that this does not work. Turkey, a potential member of the EC (it has applied), is not
part of Europe. In other words, Europe does not necessarily contain all the European

Country Names Country Codes Belonging to Regions

Germany DM EU (Europe)

Italy IT EU (Europe)

Japan JP FE (Far East)

Turkey TK ME (Middle East)

United Kingdom UK EU (Europe)

United States US NA (North America)

Table 15.5: Extended partial country listing

REGIONS

REGION

UNITED
KINGDOM

FRANCE

COUNTRIES

COUNTRY

EUROPE

SOUTH
AMERICA

COUNTRY NESTED IN REGION
WHOLE-PART TUPLES

Constrained
'Optional-to-One'

Cardinality

THINGS
WHOLE-PART TUPLES

Unconstrained
'Optional-to-Mulitple'

Cardinality

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
336 Chapter 15 Re-Engineering Region

Community (it will not when Turkey joins the EC). And vice versa, the European Com-
munity does not yet contain all of Europe.

So an accurate model needs to be able to reflect European EC members, such as Ger-
many, as nested in at least two regions: Europe and the EC (this gives a lattice struc-
ture). We revise the extended partial country listing in Table 15.5 to reflect this. The
result is shown in Table 15.6.

We reflect this insight in the object model by relaxing the cardinality from
optional-to-one to optional-to-multiple (shown in Figure 15.24). If you think about it, you
will realise that this less constrained cardinality applies to the other nesting patterns
(country nested in country and region nested in region) as well. You may have noticed
that the relaxation of the cardinality has another effect. The country nested in region
whole–part tuples class is now classified redundant—like the other nesting tuples
classes. This is because its cardinalities no longer contain any additional information.

3.2 Region stages

We now extend the nesting pattern to include region stages, following the country pat-
tern. We start by re-engineering one of the events that cause these stages, country join-
ing region. This gives us the region stages pattern, which we use to generalise the
nested pattern to the geo-political areas level.

Country names Country Codes Belonging to Regions

Germany DE EU (Europe)
WE (Western Europe)
EC (European Community)

Italy IT EU (Europe)
WE (Western Europe)
EC (European Community)

Turkey TK ME (Middle East)
EC (European Community)

Japan JP FE (Far East)

United Kingdom GB EU (Europe)
EC (European Community)

United States US NA (North America)

Table 15.6: Revised extended partial country listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-engineering our conceptual patterns for region 337

Figure 15.24:
Unconstrained
country nesting in
region object
schema

3.2.1 Re-engineering the country joining region event pattern

We start with an example; the United Kingdom joining the European Community in
1973. The re-engineering gives us the space-time map shown in Figure 15.25 and the
object schema shown in Figure 15.26. These have similar shapes to the country re-
engineering example; the 1707 Act of Union event joining Scotland to the United King-
dom (shown in Figures 14.12 and 14.13). This bodes well for the generalisation.

Figure 15.25:
United Kingdom
joining the Euro-
pean Community
space-time map

COUNTRIES

COUNTRY

REGIONS

REGION

EUROPEAN
COMMUNITY

ITALY

EUROPE GERMANY

COUNTRY NESTED IN REGION
WHOLE-PART TUPLES

Unconstrained
'Optional-to-Mulitple'

Cardinality

THINGS
WHOLE-PART TUPLES

EUROPEAN
COMMUNITY
(1957-1973)

EUROPEAN
COMMUNITY

(1973-?)
EUROPEAN

COMMUNITY

UK
JOINING THE EC

UNITED
KINGDOM

UNITED KINGDOM
(1973-?)

UNITED KINGDOM
(1801-1973)

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
338 Chapter 15 Re-Engineering Region

Figure 15.26:
Country joining
region events
object schema

We then take the pattern up to class level. First for the country joining region events,
giving us the schema in Figure 15.26 And then for the country and region stages, giving
us the schema in Figure 15.27. Note that this combines the nesting and stages patterns
and generalises them to the geo-political areas level.

Figure 15.27:
Generalised geo-
political areas &
stages

REGIONS

REGION

COUNTRIES

COUNTRY

COUNTRY
JOINING

REGION EVENTS

COUNTRY JOINING REGION TUPLES

EUROPEAN
COMMUNITY

UNITED
KINGDOM

REGION IS JOINED
BY COUNTRY TUPLES

COUNTRY JOINS
REGION TUPLES

UNITED
KINGDOM

JOINING THE
EEC

COUNTRIES

UNITED
KINGDOM

UNITED
KINGDOM
(1973-?)

EUROPEAN
COMMUNITY

(1973-?)

GEO-POLITICAL
AREAS

EUROPEAN
COMMUNITY

GEO-POLITICAL
AREAS AND
STAGES

GEO-POLITICAL
AREA/STAGE

WHOLE-PART TUPLES

TEMPORAL WHOLE-PART TUPLES

THINGS
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Summary 339

3.2.2 Generalising to geo-political areas joining event

Our concern here is not with joining events. We only use them to provide us with an
example of the region stages pattern. However, it should be clear that the country join-
ing region event pattern is one of the geo-political area joining event patterns. And that
country’s Acts of Union pattern (see Figure 14.17) is also one, although they have
slightly different shapes. Unlike the country joining region event pattern, the joining in
the Acts of Union pattern constructs a new country. In a ‘real’ re-engineering, we would
re-engineer all the different patterns and then generalise them to the geo-political area
joining event, raising the pattern up to the geo-political areas level. But we have done all
we need to do for this worked example.

3.2.3 Geo-political area nesting/stage pattern re-use

If we consider the re-engineering so far, three main patterns have emerged. These are:
• the naming pattern,
• the geo-political area joining pattern, and
• the combined geo-political area nesting/stage pattern.

All of these provide us with good examples of the power of re-engineering. Take the last
pattern—geo-political area nesting/stage. The application level (the one that matters for
system building) of the object model in Figure 15.27 is both more general and function-
ally richer than the system from which it was re-engineered. It operates at the geo-polit-
ical area level, and unlike the entity format, it can reflect:

• countries nested in countries,
• regions nested in regions, and
• countries nested in multiple regions.

In the next chapter, this pattern will be re-used again, generating more
compacting.

4 Summary

Our object model for spatial patterns is now more general and more powerful after the
generalising of country’s conceptual patterns across regions and up to geo-political
areas.

This example has shown, again, how much potential there is for re-use and generalisa-
tion. The way in which country and region share patterns, and the ease with which
these patterns combine, is uncanny. However, this can be explained in terms of our
strong unconscious conceptual patterns for space. Uncovering these and making them
explicit and accurate in an object model is the purpose of the re-engineering.

The re-engineering of spatial patterns is not yet complete. In the next chapter, we
re-engineer our final example of a spatial pattern—address. However, this will demon-
strate the re-usability of our general, object model, rather than enhance it.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
340 Chapter 15 Re-Engineering Region

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 16
Re-Engineering Bank Address

1 Introduction

2 Familiarising ourselves with bank address entity formats

3 Re-Engineering bank

4 Re-Engineering address

5 Nested address lines

6 Address joining events

7 Generalising name

8 An aspect of a pattern

9 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
342 Chapter 16 Re-Engineering Bank Address

1 Introduction
We have completed the re-engineering of the first two examples of spatial patterns;
country and region. We now move onto the third and final example, address (see Fig-
ure 16.1). This example illustrates the power of the basic object model for spatial pat-
terns we have constructed. It shows how it can be re-used to capture the patterns for
address, without any changes. It also provides us with an opportunity to construct a
truly general model for the naming pattern.

Figure 16.1:
Third and final of
three examples of
spatial patterns

As you are now quite familiar with the systematic re-engineering approach, we take a
high level view. Even though address’s entity format is quite different from the earlier
formats, its re-engineering follows the same basic pattern. Like before, we re-use pat-
terns that we have already re-engineered; and, as you have now come to expect, this
means we generalise them.

2 Familiarising ourselves with bank address entity formats

We start off, as always, by familiarising ourselves with specific examples of the entity
format we are going to re-engineer.

COUNTRY REGION ADDRESS

SPATIAL PATTERNSSPATIAL PATTERNS

Bank 001 BarcWest Bank 003 Chase Hanover Bank

Address Black Horse House
Moorgate
London
United Kingdom

BarcWest Tower
Old Broad Street
London
United Kingdom

Bank 002 NatLand Bank 004 Banco di Guernsey

Address Listening Buildings
21 Moorgate
London
England

54th Floor
BarcWest Tower
Old Broad Street
London
England

Table 16.1: Partial address listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-Engineering bank 343

Table 16.1 has a partial address listing that we use to do this. This is really a partial
view of the address fields on the bank file—in other words, the attributes for the bank
entity type. We call it bank address, because we are only interested in bank address’s
spatial patterns. However, we must re-engineer bank to get to bank address.

From Table 16.1, we can work out that the entity format for bank address (bank) that is
shown in Table 16.2

3 Re-Engineering bank

We start by re-engineering, in outline, the bank elements of the entity format. In this
example, we look at the bank entity type sign and its attribute types, bank full name and
code.

Figure 16.2:
Banks object
schema

Entity type Bank

Attribute type #1 Bank code

Attribute type #2 Bank full name

Attribute type #3 Address line 1

Attribute type #4 Address line 2

Attribute type #5 Address line 3

Attribute type #6 Address line 4

Attribute type #7 Address line 5

Table 16.2: Bank address entity format

BANKS

BANK

BARCWEST
BANK

NATLAND
BANK

CLASSES

CLASS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
344 Chapter 16 Re-Engineering Bank Address

3.1 Re-engineering the bank entity type sign

We follow the rules and start by re-engineering the entity type sign before the attribute
type signs. We are not really interested in bank because it is not a spatial or naming pat-
tern; it is just a hook to hang address’s spatial patterns on; so, we move through the
re-engineering quickly. We re-engineer two individual banks and use these to construct
the banks class. We construct signs for these classes and get the object schema in Fig-
ure 16.2.

3.2 Re-engineering bank’s full name and code attribute type signs

The bank full name and code attribute types are based on naming not spatial patterns,
and they can be used to generalise the naming patterns in the model. We start by re-
using the geo-political naming pattern (illustrated in Figure 15.21) as a template to con-
struct the bank naming pattern. This gives us Figure 16.3. We will return to this schema
later in the chapter to generalise the naming patterns.

Figure 16.3:
Bank naming
tuples classes
object schema

4 Re-Engineering address

We now move from bank to address and start to re-engineer the five address lines.
When most people look at the lines of an address, they see a series of simple attribute
signs. When we start analysing these, we will see a very different pattern—one that has
been severely distorted to fit into the attribute structure.

4.1 Re-engineering address line one attribute type sign

We follow the rules. We have already re-engineered the entity type sign; so, we can
start re-engineering the attribute type signs. We start with the address line one sign.

BANK
NAMING
TUPLES CLASSES

TUPLES CLASSES

TUPLES

BANK
NAMES

BODIES

BODY

BANKS

BANK

TUPLES

BANK/
NAMING TUPLES

BANK NAME/
NAMING TUPLES

CHARACTER
STRING
CLASSES

BANK
FULL NAMING
TUPLES

BANK
CODING
TUPLES

CHARACTER
STRINGS

EXEMPLAR
BANK
NAMES

BANK/
EXEMPLAR NAME

BANK NAME
EXEMPLAR MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-Engineering address 345

Table 16.3 has a partial listing of the individual attributes that we use to start the re-
engineering.

4.1.1 Re-engineering the individual attribute signs

Following the rules, we re-engineer some individual address line one attribute signs
before we re-engineer the attribute type sign. We pick BarcWest’s—Black Horse
House—from Table 16.3. What does this sign refer to? Within the entity paradigm, it not
only refers to a ‘located at’ attribute of BarcWest but also implicitly to Black Horse
House, where BarcWest is located. It is the implicit relational attribute sign described by
Figure 16.4.

Figure 16.4:
Bank ‘located at’
location attribute

We start the re-engineering with the Black Horse House entity. This is a building on
Moorgate, one of the streets in the City of London. In the object paradigm it persists
through time and has a continuous four-dimensional extension; so, it is a physical body
object; in other words, a sub-class of the framework class, bodies.

Then we re-engineer the ‘located at’ connection it has with BarcWest Bank. This is
transformed into the couple <BarcWest Bank, Black Horse House> belonging to a bank
‘located at’ tuples class.

We pick another attribute sign from Table 16.3—NatLand Bank’s Listening Buildings—
and re-engineer it. It follows the same pattern. The sign also refers to a building on
Moorgate, one where NatLand Bank is located. We construct signs for both these

Bank Address line one

BarcWest Bank Black Horse House

NatLand Bank Listening Buildings

Chase Hanover Bank BarcWest Tower

Banco di Guernsey 54th Floor

Table 16.3: Partial address line one listing

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

BLACK
HORSE
HOUSE

BANK
LOCATION

BANK

BARCWEST

LOCATED AT

BLACK HORSE
 HOUSE

LOCATED AT

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
346 Chapter 16 Re-Engineering Bank Address

objects and their sub-class connection to bodies. This gives the object schema in Fig-
ure 16.5.

Figure 16.5:
Bank ‘located at’
tuples object
schema

4.1.2 Re-engineering the attribute type sign

We now re-engineer the address line one attribute type sign. We have done part of the
work with the bank ‘located at’ tuples class. We now need to construct a class for Black
Horse House and Listening Buildings. Address line one is not really a very informative
name for the class, so we use ‘bank locations’. We construct a sign for it and get the
object schema in Figure 16.6. You will notice that bank locations is derived from the
bank ‘located at’ tuples class.

Figure 16.6:
Bank locations
object schema

BANKS

BANK

BODIES

BODY

BARCWEST
BANK

NATLAND
BANK

located at

fronoi tacol

LISTENING
BUILDINGS

BLACK HORSE
HOUSE

BANK LOCATED AT
TUPLES

BLACK HORSE
HOUSE

LISTENING
BUILDINGS

BANK
LOCATIONS

BANKS

BANK

rof noi tacol

BANK LOCATED
AT TUPLES

locat ed at

BODIES

BODY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-Engineering address 347

If we think carefully, maybe stretching our imaginations a little, we can see that bank
locations are a type of a geo-political area. They are not as big as countries or regions,
but they work in the same way, occupying a defined space. Once we recognise this, we
see that bank locations is a sub-class of geo-political areas. This gives us an opportu-
nity to generalise and compact.

We can generalise the ‘bank location for’ class place up the super–sub-class hierarchy
to geo-political areas following the compacting pattern we have used in earlier exam-
ples and discussed in Chapter 10 (illustrated in Figure 10.46). This makes bank loca-
tions redundant; it is just those geo-political areas at which a bank is located (shown in
the object schema in Figure 16.7).

Figure 16.7:
Compacted bank
‘located at’ tuples
object schema

4.1.3 Address line one’s naming pattern

The address line one (or ‘located at’) attribute sign needs one last important bit of anal-
ysis. Look again at BarcWest’s attribute sign. It contains the character string ‘Black
Horse House’. The particular characters in the string are important. They make up the
full name of the location. This means we need to revise the entity model of the attribute
in Figure 16.4; we have to add in the bank full names entity as shown in Figure 16.8.
We now need to re-engineer this revised entity model.

Figure 16.8:
Bank full name
and location
attributes

GEO-POLITICAL
AREAS

BANKS

BANK

rof noi tacol

BANK
LOCATIONS

BANK LOCATED
AT TUPLES

locat ed at

BODIES

BODY

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

BARCWEST BLACK
HORSE
HOUSE
FULL
NAMES

BLACK
HORSE
HOUSE

BANK
LOCATION
FULL
NAMES

BANK
LOCATION

BANK

FULL NAMELOCATION

BLACK HORSE
HOUSE

'BLACK HORSE
HOUSE'

FULL NAMELOCATION

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
348 Chapter 16 Re-Engineering Bank Address

However, if we look carefully at the patterns in our lexicon, we will see that the naming
pattern has already been re-engineered. In the region example, we generalised the
naming pattern, including the full naming pattern, up to geo-political area level. Because
the bank location is a sub-class of geo-political area, it inherits its full naming patterns.
Bank location—as a geo-political area—already has a full name. This is illustrated in
Figure 16.9. The re-engineering does not need to construct any new objects.

Figure 16.9:
Bank locations full
name object
schema

However, it does introduce a new re-engineering pattern for attribute type signs, such
as bank location. We are familiar with the re-engineering pattern for relational attribute
type signs, which gives us a tuples class and its place class. We are also familiar with
the re-engineering pattern for naming attribute type signs, which gives us a naming
tuples class and its name class. Here, we have a re-engineering that combines the two
patterns—a sort of naming relational pattern. This is a useful pattern to have when re-
engineering. Naming relational attribute type signs are common in entity based sys-
tems.

This also is a good illustration of the semantic accuracy required when re-engineering. If
we had not been careful, we could have easily stopped the analysis at bank location.
Then we would not have recognised that there was a full name pattern to re-engineer—
even though it now stares us in the face.

4.2 Re-engineering the other address lines attribute type signs

Because the re-engineering of the other address lines follows a similar pattern, we do it
here in bulk. This also helps us to see a connecting pattern between the lines.

Like bank locations, with a little stretching of the imagination, we can see the other
address lines as full names for geo-political areas. BarcWest’s ‘Old Broad Street’ and
‘London’ are larger than bank locations and smaller than countries or regions, but still
the same type of object. Address line four, ‘United Kingdom’, is a country—so, by our
previous re-engineering, already a geo-political area. This has other implications that
we will examine later.

NATLAND
BANK FULL
NAMES

GEO-POLITICAL
AREAS FULL
NAMES

NATLAND
BANK

GEO-POLITICAL
AREA FULL NAMING
TUPLES CLASSES

GEO-POLITICAL
AREAS

BANK
LOCATIONS

BANK LOCATION
FULL NAMING
TUPLES CLASSES

NATLAND BANK
FULL NAMING

TUPLES

GEO-POLITICAL AREA/
FULL NAMING TUPLES

GEO-POLITICAL AREA
FULL NAME/

FULL NAMING TUPLES

BANK
LOCATION
FULL NAMES

fully named b y

se man yll uf

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Nested address lines 349

These other address lines do not have exactly the same pattern as address line one.
Unlike it, they do not have a ‘located at’ connection with a bank, and so are not bank
locations. Otherwise, their patterns are the same. At the application level, the other
address lines are geo-political areas, and so, like address line one, inherit its full naming
patterns. This means we do not need to re-engineer any new application level objects
for them (illustrated by the schema for BarcWest’s address in Figure 16.10).

Figure 16.10:
BarcWest’s
address object
schema

5 Nested address lines

We have re-engineered all the explicit patterns for these bank address lines, but there is
still one vital implicit pattern that our accurate semantic analysis needs to pick up.

If we look at the listing of addresses in Table 16.1 again, it appears that there cannot be
anything special about which line the objects appear on. For example, one of them,
‘BarcWest Tower’, appears as address line one in Chase Hanover’s address and as
address line two in Banco di Guernsey’s address. It cannot be intrinsically both a line
one and a line two object.

However, the order of the lines is important. This is easy to show; look at the addresses
in Table 16.4. They are clearly not valid addresses; yet, all I have done is move the
position of the lines. The reason they are not valid addresses is the positioning of the
lines reflects an implicit pattern, and changing the order of the lines breaks it. We are so

BLACK HORSE
 HOUSE MOORGATE LONDON

UNITED
KINGDOM

BANK
LOCATIONS

GEO-POLITICAL
AREAS

GEO-POLITICAL
AREA FULL NAMING
TUPLES CLASSES

GEO-POLITICAL
AREA FULL
NAMES

GEO-POLITICAL
AREA FULL NAME/

FULL NAMING
TUPLES

GEO-POLITICAL
AREA/FULL

NAMING TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
350 Chapter 16 Re-Engineering Bank Address

familiar with this implicit pattern that we automatically read it in. We only notice that it
existed when it is not there.

5.1 Implicit whole–part tuples

A little thought shows that the order of the address lines implies a whole–part connec-
tion between them. For example, because London is on the line before United Kingdom,
this implies it is part of United Kingdom. We broke the order of this whole–part pattern
when we moved the lines around. Figure 16.11 shows an entity view of the whole–part
pattern for BarcWest’s address.

Figure 16.11:
BarcWest’s
address’s implicit
whole–part pat-
terns

This is not how Aristotle’s entity paradigm structure was originally meant to work. It has
been ‘bent’. We are now so familiar with this ‘bending’ that we automatically supply the
implicit whole–part patterns. However, we do not need to do any bending in the object
paradigm. In fact, the strong reference principle demands that we map the whole–part
connections directly and explicitly into the model. Figure 16.12 illustrates the result.

Bank 001 BarcWest Bank 003 Chase Hanover Bank

Address United Kingdom

Moorgate
Black Horse House
London

London

BarcWest Tower
United Kingdom
Old Broad Street

Table 16.4: Altered address lines

BARCWEST
BANK

BLACK HORSE
HOUSE

MOORGATE

LONDON

UNITED
KINGDOM

MOORGATE

MOORGATE
LONDON

LONDON

UNITED
KINGDOM

BLACK HORSE
HOUSE

BLACK HORSE
HOUSE

ADDRESS LINE 1

ADDRESS LINE 2

ADDRESS LINE 3

ADDRESS LINE 4

CONTAINS

CONTAINS

CONTAINS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Nested address lines 351

Figure 16.12:
BarcWest’s
address’s whole–
part tuples object
schema

5.2 More accurate whole–part pattern

You have probably recognised that this modelling of the whole–part pattern is not as
accurate as it should be. In Chapter 14, when we re-engineered country’s nested
whole–part patterns, we saw how Scotland was only ‘part of’ the Great Britain for part of
its life. In other words, a stage of Scotland—and not Scotland—was part of the United
Kingdom. This is illustrated in Figure 14.12.

Figure 16.13:
More accurate
whole–part pat-
terns

The address lines are geo-political areas and so could have a similar pattern to Scot-
land. Though it is unlikely, there is no reason why Black Horse House should not be
bought by a foreign billionaire and transported to another country. In this case, Black
Horse House would have a similar pattern to Scotland. It would only be part of Moorgate
for part of its life. In other words, a stage (state) of Black Horse House would be part of
Moorgate. We do not need a new pattern to capture this. We can re-use the geo-politi-
cal areas and stages nesting pattern. Figure 16.13 illustrates what the more accurate
model looks like.

BLACK HORSE
HOUSE

MOORGATE LONDON ENGLAND

part of

contains

GEO-POLITICAL AREA
WHOLE-PART TUPLES

GEO-POLITICAL
AREAS

BLACK HORSE
HOUSE

(?-1997)

BLACK HORSE
HOUSE MOORGATE

GEO-POLITICAL
AREAS &
STAGES

part of

contains

GEO-POLITICAL AREA/STAGE
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
352 Chapter 16 Re-Engineering Bank Address

5.3 Re-engineering the same object twice

When we were re-engineering the other address lines, we noted that one of the address
lines—BarcWest’s address line four—was the full name for a country—‘United King-
dom’. This raises an important point. It is impractical to apply the strong reference prin-
ciple consistently in the constrained entity environment. So, sometimes, there is more
than one sign for an entity. This is a case in point. United Kingdom on the country file
and United Kingdom in BarcWest’s address both refer to the same entity.

Under the strong reference principle, we should re-engineer these two entity signs into
one sign in the object model. Where there is duplication in the existing system, we do
not replicate it in the model. So we do not re-engineer a new sign in the model for the
United Kingdom, but re-use the existing one. Figure 16.14 shows the re-engineering
pattern.

Figure 16.14:
United Kingdom
re-engineering
pattern

Duplication of signs occurs with a vengeance within address. Consider the list of
address line attributes from Table 16.1 in Table 16.5. It is plain that the four Londons
(and three Englands) in the various addresses are full names for the same entities. Fig-
ure 16.15 shows what the re-engineered undistorted de-duplicated model looks like for
two of the addresses.

This de-duplication leads to compacting. Transforming two (or more) signs in the entity
model into one object sign makes the model smaller and leaner. It also makes mainte-
nance of the implemented system easier. In the existing system, when an address entity
changes its full name then this change has to be applied to all its full name signs. Let’s
say London changed its name to Londres; then, every bank address line that contains
‘London’ would need to be changed. There are four of these in this small example; there
could be hundreds, or even thousands, more in a working entity oriented system. How-

UNITED KINGDOM
ATTRIBUTE SIGN

ENTITY
SYSTEM

UNITED KINGDOM
SUBSTANCE

UNITED KINGDOM
OBJECT

ENTITY
DOMAIN

OBJECT
DOMAIN

UNITED KINGDOM
SIGN

OBJECT
MODEL

UK
ENTITY SIGN

UK

BANK

UK

ADDRESS
UNITED

KINGDOM

COUNTRY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Nested address lines 353

ever, in a system based on the object model, there would only be one and so the
change would only need to be done once.

Figure 16.15:
BarcWest and
Chase Hanover
Bank addresses

Figure 16.16:
Moorgate object
schema

Bank Address Line No. Location

BarcWest Bank 3 London

NatLand Bank 3 London

4 England

Chase Hanover Bank 3 London

Banco di Guernsey 4 London

5 England

Table 16.5: Selected address line attributes listing

BLACK HORSE
HOUSE

LONDON

BARCWEST
TOWER

MOORGATE

OLD BROAD
STREET

UNITED
KINGDOM

GEO-POLITICAL
AREAS &
STAGES

GEO-POLITICAL AREA/STAGE
WHOLE-PART TUPLES

LISTENING
BUILDINGS

LONDON

BLACK HORSE
HOUSE

21 MOORGATE

MOORGATE

GEO-POLITICAL
AREAS &
STAGES

GEO-POLITICAL AREA/STAGE
WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
354 Chapter 16 Re-Engineering Bank Address

5.4 One name referring to two objects

Addresses contain a number of implicit patterns and it can take some time to uncover.
For example, one of the addresses in Table 16.1 contains another implicit pattern. Con-
sider two address lines; BarcWest Bank’s address line two—‘Moorgate’—and NatLand
Bank’s address line two—‘21 Moorgate’. We automatically recognise that BarcWest and
NatLand Banks are both located on the same street—Moorgate. However, this recogni-
tion has not been captured by the re-engineering (shown in their model in Figure
16.16). Listening Buildings is not signed as a part of Moorgate.

To capture this, we have to divide the name ‘21 Moorgate’ into two names—‘21’ and
‘Moorgate’. The name ‘21’ is another way of indicating the NatLand Bank’s location, Lis-
tening Buildings. It is not a full name, so we treat it as a code. ‘Moorgate’ is a duplication
of BarcWest Bank’s address line two—Moorgate—the full name for a street. The new
model is shown in Figure 16.17. This clearly shows that the two buildings are both
located in Moorgate.

Figure 16.17:
New Moorgate
object schema

6 Address joining events

When we re-engineered country and region, the nesting pattern went hand in hand with
joining events. For example, the stage of Scotland that is part of Great Britain was cre-
ated by the 1707 Scottish Act of Union Joining Event. When we re-engineered region,
we generalised the patterns to the geo-political area level. Addresses, as geo-political
areas, inherit the joining event patterns.

These patterns are useful for addresses. When counties’ boundaries are moved and
towns end up in new counties—a reasonably regular occurrence nowadays—this is a
joining event. It can be modelled re-using the geo-political area joining patterns.

7 Generalising name

We now turn our attention from spatial to naming patterns. At the beginning of this chap-
ter, when we were re-engineering the bank full name and code attribute type signs, I

GEO-POLITICAL
AREA CODING
TUPLES
CLASSES

GEO-POLITICAL
AREA FULL
NAMING TUPLES
CLASSES

MOORGATE

LISTENING
BUILDINGS

BLACK HORSE
HOUSE

'21'
CODES CLASS

'LISTENING
BUILDINGS'
FULL NAMES
CLASS

GEO-POLITICAL
AREAS AND
STAGES

GEO-POLITICAL
AREA/STAGE

WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 Generalising name 355

noted that we would use their object model to generalise the naming pattern. We do this
now; we generalise naming above and away from geo-political areas and bank. This
gives us a separate re-usable web of completely general naming patterns.

7.1 A general model for naming patterns

The bank and geo-political area naming models are the same shape. It seems likely
that all naming models share the same shaped pattern. So there is an opportunity to
generalise to a naming pattern. We take this now. We start with the general naming
tuple and build up its connecting patterns. We derive from it the class of named
objects—those objects that are connected by the named object/naming tuple class
place. In theory, any object can be named; so, this named object class is a sub-class of
the framework class, objects. We also derive the names class—those objects that are
connected by a class place link to the name/naming tuples class. This names class is a
sub-class of character strings.

This gives us the general model for the naming pattern shown in Figure 16.18. As you
can see, it is independent of both geo-political areas and banks. Furthermore, it has 15
objects of which only 10 are specific to names. This pattern is ubiquitous; its model will
be re-used a large number of times in almost every re-engineering. Therefore, it makes
sense to put its model into the general lexicon (which we discussed in Chapter 11) by
classifying its objects as framework level. As you can see, this has been done in Figure
16.18.

Figure 16.18:
Generalised nam-
ing tuples object
schema

Undoubtedly, when the naming model is re-used, there will be opportunities to enhance
it. For example, currency symbols, such as ‘£’ and ‘$’, which are not currently catered
for, might be found as attributes of the currency entities. These would be generalised
into the naming pattern. They would probably be generalised to a new sub-class of the
naming tuples class—the symbol naming tuples classes. In this way, the model natu-
rally grows as we expand our explicit understanding of the naming pattern.

7.2 Compacting with the general naming model

This general naming model leads to substantial compacting. Most of the systems that I
have worked on have had well over 100 entity types (files). Almost all of these had

CHARACTER
STRINGS

OBJECTS

OBJECT

TUPLES TUPLES CLASSES

TUPLES

CHARACTER
STRING
CLASSES

NAMED
OBJECTS

NAMES EXEMPLAR
NAMES

NAMING
TUPLES
CLASSES

NAMED OBJECT/
NAMING TUPLES

NAME/
NAMING TUPLES

NAMED OBJECT/
EXEMPLAR NAME

FULL NAMING
TUPLES

CODING
TUPLES

 NAME
EXEMPLAR MEMBER

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
356 Chapter 16 Re-Engineering Bank Address

name attribute type;, many have had two (a full name and code), some have had more.
So there would usually be well over 200 name attribute types in a system. We re-engi-
neered these by transforming their entity types into classes that were sub-classes of the
named objects class. Because they then inherited the general naming pattern, no other
re-engineering was necessary. As well as simplifying the re-engineering process, this
compacts the model. The original 200 name attribute types are compacted into the
naming pattern’s 10 objects. Furthermore, adding additional name attribute types would
not increase the size of the model.

8 An aspect of a pattern

The address format was originally designed for paper and ink technology; it fits naturally
onto the cover of an envelope. It also transfers effortlessly into the entity paradigm’s
framework. The re-engineering of address gives us a good insight into how much some
patterns have had to be distorted to fit onto paper and ink technology and into the entity
paradigm. The patterns we end up with in the object model are very different from the
patterns we start with in the existing system.

These radically changing patterns can seem odd. I find it useful to think of them in terms
of this analogy. Consider a three-dimensional pyramid, but assume that we can only
see it from one aspect at a time. If we look from the top—Figure 16.19 (a)—it has a dia-
mond outline. If we look at if from the ground, directly facing one side—Figure 16.19
(b)—we see a triangle. If we move so that we are not directly facing a side – Figure
16.19 (c)—we see an odd shaped four-sided figure. Because we can only see the pyra-
mid in two dimensions, we only see one aspect of it at one time.

Figure 16.19:
Aspects of a three-
dimensional pyra-
mid

Assume now we were to try and build a model of the pyramid. We would not build three
models, one for each of the aspects; we would build one model of the complete pyra-
mid. We could re-create the aspects we looked at earlier by taking a particular view of
our three-dimensional model. The radical differences between the entity patterns and
the object patterns are like the radical differences between any one of the two-dimen-
sional views and the three-dimensional model. In the same way that only looking at the
pyramid in two-dimensions views gives us an aspect, so the two-dimensional con-
straints of the entity paradigm produce partial views of business objects.

(c) Multiple Side View(a) Top View (b) Single Side View

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
9 Summary 357

9 Summary

This re-engineering of address has completed the basic object model for spatial pat-
terns; it is ready for re-use in future re-engineering projects. More importantly, this and
previous chapters have given us a feel for how the systematic re-engineering process
works. We now know the standard steps in the process and are familiar with a number
of common re-engineering patterns.

As discussed in the previous section, address has also given us a useful example of
how using the entity paradigm (the paradigm behind address) can distort the overall
shape of business objects. We have seen how fitting address into the entity paradigm’s
constraints fixes one particular view. We have also seen how re-engineering frees it
from that constraint, giving us a full rounded view of the business objects. Furthermore,
we have seen how general objects that enable substantial re-use, such as the naming
objects, are constructed.

In the next chapter, we re-engineer some of the entity paradigm’s temporal patterns into
an object model for time. Like space, time is fundamental to most business paradigms
and so the model is very re-usable.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
358 Chapter 16 Re-Engineering Bank Address

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 17
Re-Engineering Time

1 Introduction

2 Re-engineering an existing system’s bank holiday entity format

3 Re-engineering day

4 Re-engineering bank holiday

5 Re-engineering an existing system’s weekend entity formats

6 Re-engineering our conceptual patterns for bank holiday and weekend

7 The object model for temporal patterns

8 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
360 Chapter 17 Re-Engineering Time

1 Introduction
In the last five chapters, we constructed an object model for spatial patterns by re-engi-
neering low-level three entity formats. We now turn to the similar task of constructing a
generalised object model for temporal patterns. We do this by re-engineering the two
low-level entity formats; bank holiday and weekend (Figure 17.1). Their re-engineering
reveals temporal patterns that are very general and will be found in most systems. Now,
that we are familiar with the steps in the re-engineering process, we focus on what is
being re-engineered.

Figure 17.1:
Two examples of
temporal patterns

The spatial patterns that we re-engineered in the previous examples were reasonably
intuitive. The analysis can be seen as, in some ways, a clarification of our common-
sense views of space. The re-engineering of time is different. The object paradigm
offers such a radically different view of time and temporal patterns that our intuitions
cannot give us any sensible guidance (as we saw when we examined its semantics in
Chapter 8). Even though the temporal model we re-engineer in this chapter provides a
good explanation of our everyday uses of temporal terms, the patterns themselves ini-
tially seem odd. This is a good sign; it is to be expected from a radical re-engineering.

2 Re-engineering an existing system’s bank holiday entity format

We start by re-engineering the bank holiday entity format. As usual we start by looking
at some of the existing entities. Table 17.1 gives us a Partial Bank Holiday Listing.

BANK
HOLIDAY WEEKEND

TEMPORAL PATTERNSTEMPORAL PATTERNS

Country Code Date

UK 09-Apr-93

UK 03-May-93

US 18-Jan-93

US 16-Feb-93

US 31-May-93

Table 17.1: Partial bank holiday listing

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-engineering day 361

From this, we can deduce the entity format shown in Table 17.2.

2.1 Bank holiday as a relational entity

Bank holiday is a relational entity type. It is derived from the entity types, country and
day. It is not a pseudo entity type, such as the employee–project we discussed in Chap-
ter 3 (see Figure 3.24). Those were a workaround solution to the problem of handling
many-to-many relational attribute types in the entity paradigm. Unlike them, bank holi-
day is real. We will confirm this when we see the object that it is transformed into. But,
like the pseudo entity types, bank holiday’s two attribute types link it to the entity types
from which it is derived (illustrated in Figure 17.2).

Figure 17.2:
Bank holiday rela-
tional entity

When re-engineering a real or pseudo relational entity type, we follow a similar rule to
re-engineering a relational attribute. We re-engineer the related entity types before we
re-engineer the relational entity type. So here we re-engineer country and day before
we re-engineer bank holiday. Country has already been re-engineered in a previous
example; so, we only need to re-engineer day.

3 Re-engineering day

Most computer systems do not have a day file (corresponding to the entity type shown
in Figure 17.2) with a record (entity) for each day. In other words, the day (or date)
entity is not usually found explicitly implemented in most computer systems. However, it

Entity Type Attribute Type #1 Attribute Type #2

Bank holidays Country code Date

Table 17.2: Bank holidays entity format

P
R

IM
A

R
Y

L
E
V

E
L

S
E
C

O
N

D
A

R
Y

L
E
V

E
L

9th
APRIL
1993

UNITED
KINGDOM/
9-APR-93
BANK
HOLIDAY

19-APR-93

GB

DAY

UNITED
KINGDOM

COUNTRY BANK
HOLIDAY

DATE

COUNTRY

COUNTRY

DATE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
362 Chapter 17 Re-Engineering Time

is there, but implemented implicitly. The individual day entities are deduced from the
day code attributes of other entities. It can be thought of as an entity implemented as a
process (as we discussed in Chapter 2).

We need to re-engineer this implicit entity. The easiest way to do this is to construct an
explicit entity format for it and subject this to the standard re-engineering procedure.
Once the format is constructed, we can continue as usual. We familiarise ourselves with
the entity format by looking at some examples of what we are going to re-engineer.
Table Table 17.3 gives us a partial day listing.

From this, we deduce the entity format shown in Table 17.4.

3.1 Re-engineering the day entity type sign

In this example, we only re-engineer the day entity type sign. We do not need to re-engi-
neer its associated day code attribute type sign. If we were to re-engineer it, then it
would fall under the naming pattern re-engineered in the previous chapters. For the day
entity type sign, we follow the second rule and re-engineer a couple of day entities
before the day entity type.

We start with an individual day selected from Table 17.3—9th April 1993. From an entity
point of view, the sign refers to a period of time—a day. It starts just after midnight of the
8th April 1993 and continues until midnight 9th April 1993.

Our examination of the object semantics of temporal patterns, in Chapter 8, tells us
what object this entity is transformed into. It is a temporal stage of the whole of
space-time. It is every part of space-time for the period that starts just after midnight of
the 8th April 1993 and continues until midnight 9th April 1993. Because it persists
through time, it is a physical body. A space-time map of the object is given in Figure

Day Code

09-Apr-93

10-Apr-93

11-Apr-93

12-Apr-93

13-Apr-93

14-Apr-93

Table 17.3: Partial day listing

Entity Type Attribute Type #1

Day Day Code

Table 17.4: Day entity format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Re-engineering day 363

17.3, an object schema in Figure 17.4. Other days can be re-engineered into similar
patterns.

Figure 17.3:
Space-time map
for 9th April 1993

Figure 17.4:
9th April 1993
object schema

This is a very different way of seeing time, but we can translate the way we talk into it.
We normally say ‘today is the 9th April’. This can be understood as ‘now is a temporal
part of the four-dimensional object 9th April’. This is a mouthful and so not a practical
alternative for everyday conversation.

3.1.1 Re-engineering the entity type sign

We follow the normal re-engineering pattern. The entity type sign is re-engineered into
the class of objects that the entity signs were re-engineered into. This gives us the class
days. The members of this days class divide the four-dimensional space-time ‘sausage’
into regular day long slices. This is illustrated in the space-time map in Figure 17.5 and
modelled in Figure 17.6.

3.2 Re-engineering other time periods

We can extrapolate this pattern to give an object-oriented view of other time periods,
such as months and years. These divide the space-time ‘sausage’ into larger month
and year long temporal slices (shown in the space-time map in Figure 17.7). The
smaller slices are temporal parts of the larger slices. So, in the object paradigm, a day is
part of a month and a month part of a year in the same way as my hand is a part of my
arm.

00:00:01
9th APRIL 1993

24:00:00
9th APRIL 1993

SPACE-
TIME

9th
APRIL
1993

BODIES

9th
APRIL
1993

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
364 Chapter 17 Re-Engineering Time

Figure 17.5:
The days class

Figure 17.6:
Days object
schema

Figure 17.7:
Year, month and
day space-time
Map

All three classes can be regarded as members of a calendar periods class (shown in
the object schema in Figure 17.8). This gives us one of the groups of basic temporal
patterns we need for our temporal object model. The remainder of the re-engineering
will give us the rest.

SPACE-
TIME

9th
APRIL
1993

9th
APRIL
1993

10th
APRIL
1993

10th
APRIL
1993

11th
APRIL
1993

11th
APRIL
1993

DAYS

10th
APRIL
1993

9th
APRIL
1993

11th
APRIL
1993

DAYS

DAY

BODIES

BODY

1993APRILSPACE-
TIME

9th

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Re-engineering bank holiday 365

Figure 17.8:
Calendar periods
object schema

4 Re-engineering bank holiday

Now that we have re-engineered country and day, we can re-engineer the derived rela-
tional entity, bank holidays.

4.1 Re-engineering the bank holiday entity type sign

We follow our rules and start with an entity, an individual bank holiday. Let’s start with
the 9th April 1993 in the United Kingdom, the first entry in Table 17.1. What does this
refer to? From an entity point of view, it is a period of time—a day— that is a bank holi-
day in the United Kingdom.

Figure 17.9:
United Kingdom’s
9th April bank hol-
iday space-time
Map

We know what this bank holiday’s related objects, United Kingdom and 9th April 1993,
are. These give us a clue to what the bank holiday object is. It is the intersection (over-

YEARS

YEAR

1993 APRIL 9th

MONTHS

MONTH

DAYS

DAY

CALENDAR
PERIODS

THINGS
WHOLE-PART TUPLES

SPACE-
TIME 9th

APRIL
1993

UNITED KINGDOM
9th APRIL 1993

UNITED
KINGDOM

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
366 Chapter 17 Re-Engineering Time

lap) of the two objects the United Kingdom and the 9th April—in other words, that bit of
space-time that is part of both objects. This is illustrated in the space-time map in Fig-
ure 17.9. This shows that the intersected bank holiday object is constructed from the
other two objects.

We follow the standard pattern of re-engineering for the entity type sign. It re-engineers
into the class of objects that its entity signs were re-engineered into; this is the bank hol-
idays class. All the members of this class are logically dependent on the whole–part
tuples that they have with members of the countries and days classes. This makes the
members derived, but not the class itself. This is shown in the object schema in Figure
17.10.

Figure 17.10:
Bank holidays
object schema

Notice that the bank holiday’s connections to the intersecting objects are whole–part;
they are structural connections between extensions. These define the individual bank
holiday object and so we classify it as derived. The re-engineering of the other bank hol-
idays follows the same pattern.

It may seem odd that a bank holiday is a physical object. But it gives a good explanation
of the way we talk. If we are travelling through a country on a bank holiday, we say, ‘it is
a bank holiday here’. In object-oriented English, this translates into ‘my here object is
part of the bank holiday object’. If we were to travel straight onto the next country, we
would say, ‘it is not a bank holiday here’. This translates as ‘my here object is not part of
a bank holiday object’.

4.2 State of the object model for temporal patterns

This completes the re-engineering of the bank holiday entity formats. It has given us a
reasonable foundation for the object model of temporal patterns. The calendar periods
are useful general patterns that can be re-used in most re-engineerings. The bank holi-
day pattern is lower level, but still reasonably useful. It also links us in to the spatial pat-

UNITED
KINGDOM
9th APRIL

1993

BANK
HOLIDAYS

UNITED
KINGDOM

9th APRIL
1993

DAYSCOUNTRY/BANK HOLIDAY
WHOLE-PART TUPLES

DAY/BANK HOLIDAY
WHOLE-PART TUPLES

THINGS
WHOLE-PART TUPLES

COUNTRIES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering an existing system’s weekend entity formats 367

terns’ object model by way of countries. Later on in this chapter, we will see how we can
generalise this link up to geo-political areas.

5 Re-engineering an existing system’s weekend entity formats

We now turn to the re-engineering of the second example—the weekend entity format.
We start, as usual, by looking at the existing entities; a partial list is given in Table 17.5.

From this, we get the entity format in Table 17.6.

5.1 Re-engineering the weekend entity type sign

We follow the rules and pick an individual weekend entity sign to re-engineer—the
United Kingdom (coded as UK) from the partial listing in Table 17.5. This indicates that
the United Kingdom’s weekend is Saturday and Sunday. Even though Saturday and
Sunday appear as individual entities in this system, they are entity types. Their entities
are individual Saturdays and Sundays—such as the 6th and 7th May 1995. This means
that the United Kingdom entry we selected from Table 17.5 is also an entity type with
entities.

Country Indicators

Code Monday Tuesday Wednesday Thursday Friday Saturday Sunday

UK No No No No No Yes Yes

US No No No No No Yes Yes

Table 17.5: Partial weekend listing

Entity Type Weekend

Attribute Type #1 Country code

Attribute Type #2 Monday indicator

Attribute Type #3 Tuesday indicator

Attribute Type #4 Wednesday indicator

Attribute Type #5 Thursday indicator

Attribute Type #6 Friday indicator

Attribute Type #7 Saturday indicator

Attribute Type #8 Sunday indicator

Table 17.6: Weekend entity format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
368 Chapter 17 Re-Engineering Time

A partial listing of these entities—particular United Kingdom weekends—is given in
Table 17.7. We start re-engineering at this level and work our way up to the selected
entity sign. We select an example weekend—the 6th/7th May 1995—to re-engineer.

Figure 17.11:
United Kingdom’s
6th/7th May week-
end space-time
map

The particular weekends shown in Table 17.7 have a similar pattern to bank holidays.
They are a particular period of two days in a particular country—the United Kingdom.
They each contain a particular Saturday and a particular Sunday. This pattern of whole–
part connections is shown in the space-time map in Figure 17.11. All of the United King-
dom’s weekends share the same pattern.

Figure 17.12:
United Kingdom’s
weekends object
schema

If we generalise the pattern up to class level, we get the object schema in Figure 17.12.
Notice how all the tuples have a structural extension element.

The particular Saturday—the 6th May 1995—belongs to the Saturdays class: the partic-
ular Sunday—the 7th May 1995—belongs to the Sundays class. We can generalise this

Weekends Dates Days

#101 6th/7th May 1995 Saturday/Sunday

#102 13th/14th May 1995 Saturday/Sunday

#103 20th/21st May 1995 Saturday/Sunday

Table 17.7: Particular United Kingdom weekends partial listing

6th/7th MAY 1995
WEEKEND

UNITED
KINGDOM

UNITED KINGDOM
6th/7th MAY 1995 WEEKEND

SPACE-
TIME

SATURDAYS

SATURDAY

UK WEEKEND/SUNDAY
TUPLESSUNDAYS

SUNDAY

UNITED
KINGDOM

7TH MAY 1995

6TH MAY 1995
6TH/7TH

MAY 1995
UK WEEKEND

UK WEEKENDS

UK
WEEKEND

UNITED KINGDOM/WEEKEND
WHOLE-PART TUPLES

UK WEEKEND/SATURDAY
 TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Re-engineering an existing system’s weekend entity formats 369

pattern across all the days of the week. This gives us the object schema in Figure
17.13. This is a useful addition to the temporal object model—this general group of
objects is common in systems. If we want to, we can also add the sign for a weeks class
to the model, where each week is the fusion of seven consecutive days, starting with a
Monday.

Figure 17.13:
Days of the week

We are now ready to re-engineer the entity type sign. It is transformed into a class of
classes, the country’s weekends class, which has, for instance, the U(nited) K(ing-
dom)’s weekends class as a member. The UK weekends class’s tuples are generalised
into tuples classes (shown in Figure 17.14). This is similar to the naming tuples’ gener-
alisation into naming tuples classes shown in Figure 12.33.

Figure 17.14:
Country week-
ends class object
schema

The generalisation of UK weekends’ temporal–whole–part tuples raises a notation
issue. Temporal–whole–part tuples link individual objects—not classes. At the UK week-
ends level, this does not pose a problem because its members are at the individual
object level. However, it does pose a notation problem at the level of country weekends,
which is a class of classes. Here, there is no individual object to be a whole–part of.
This is resolved by using a combination of existing components to construct a new com-
posite sign, the temporal–whole–part-member-of sign (shown in Figure 17.14).

SATURDAYS

6TH MAY 1995 7TH MAY 1995 8TH MAY 1995 9TH MAY 1995 10TH MAY 1995 11TH MAY 1995 12TH MAY 1995

SATURDAY

SUNDAYS

SUNDAY

MONDAYS

MONDAY

TUESDAYS

TUESDAY

WEDNESDAYS

WEDNESDAY

THURSDAYS

THURSDAY

FRIDAYS

FRIDAY

DAYS OF
THE WEEK

COUNTRY/
WEEKEND
TUPLES CLASSES

COUNTRY
WEEKENDS

COUNTRY
WEEKEND/DAY
TUPLES CLASSES

DAYS

DAY

SATURDAYS

SATURDAY

COUNTRIES

COUNTRY

UK WEEKEND/SUNDAY
TUPLESSUNDAYS

SUNDAY

UNITED
KINGDOM

UNITED KINGDOM/WEEKEND
WHOLE-PART TUPLES

UK WEEKENDS
UK WEEKEND/SATURDAY

TUPLES

Composite
Temporal-Whole-Part-Of-Member

Tuple Class Sign

Temporal-Whole-Part-Of-Member
Component Sign

CLASS OF CLASSES

CLASS
MEMBER

UK
WEEKEND

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
370 Chapter 17 Re-Engineering Time

5.2 The status of the object model for temporal patterns

This completes the re-engineering of the weekend entity format. It has added two
important new groups of patterns to the object model—days and country weekends.
These are, like calendar periods, useful general patterns that are found in many sys-
tems. Even though the country weekend pattern is lower level, and so less common, it
is still useful. It also usefully illustrates how patterns are generalised up the class–mem-
ber hierarchy as well as the super–sub-class hierarchy.

It is worth noting that a number of the temporal patterns captured in the model, such as
particular UK weekends and days of the week, are traditionally implemented as date
calculation processes. This is an example of the point first raised in Chapter 2 ; that is,
data and process in the information system are not a direct reflection of bodies and
events in the real world. Like this case, individual bodies can be implemented as proc-
esses.

6 Re-engineering our conceptual patterns for bank holiday and
weekend

So far we have constructed the temporal object model by re-engineering entity formats
from existing systems. We now look at some of the more complex conceptual patterns
that we can re-engineer to make the model substantially more accurate. We look at two
patterns:

• Non-country/day holidays, and
• Time zones

All these patterns can be found in manuals listing information on holidays. For example,
in the financial sector, SWIFT produces a manual for its customers whose lists contain
these patterns (I have taken the following examples from an old copy).

6.1 Non-country/day holidays

Not all holidays fit into the simple country and day intersection pattern that we have just
re-engineered. There are a number of non-country/day holiday patterns. We look at two
of them:

• Non-country holidays, and
• Half-day holidays.

Many examples of both of these patterns can be found in the Financial Institution Holi-
days section of the SWIFT manual. We use some of them to generalise the model.

6.1.1 Non-country holidays

Some holidays apply to only a part of the country. For example, the 9th November 1993
was only a holiday in Madrid—not in the rest of Spain. This gives us an opportunity to

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Re-engineering our conceptual patterns for bank holiday and weekend 371

generalise the link between countries and bank holidays re-engineered earlier in this
chapter (illustrated in Figure 17.10).

Madrid is a city and so a geo-political area. We capture the pattern for its 9th November
1993 holiday by generalising the country/bank holiday whole–part tuples link from coun-
try to geo-political area. This gives us geo-political area/bank holiday whole–part tuples
(shown in Figure 17.15).

Figure 17.15:
Geopolitical area
bank holidays

6.1.2 Half-day holidays

The SWIFT manual has many examples of holidays that last for only part of a day. For
example, Korea only has Saturday afternoon as a holiday; people work in the morning.
Similarly, Italy, among others, has the afternoons of the 24th and 31st December 1993
as holidays. To re-engineer this, we need objects for mornings and afternoons as both
calendar and weekly periods. I leave this as an exercise for you. The object model you
produce should generalise bank holidays’ connection to day up to a more general cal-
endar period object.

6.2 Time zones

There is one important conceptual pattern we have not touched on yet and that is time
zones. We all know that the world is divided into time zones. At a certain time of the
year, when it is 2 pm in England, it is 9 am in New York. Different parts of the globe at
the ‘same’ moment in time have different ‘times’. Some big countries, such as the
United States and Australia, have more than one time zone and so more than one time.

MADRID
9th

NOVEMBER
1993

MADRID
9th

NOVEMBER
1993

BANK
HOLIDAYS

DAYS

THINGS
WHOLE-PART TUPLES

GEO-
POLITICAL
AREAS

DAY/BANK HOLIDAY
WHOLE-PART TUPLES

GEO-POLITICAL AREA/
BANK HOLIDAY

WHOLE-PART TUPLES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
372 Chapter 17 Re-Engineering Time

The SWIFT manual has a section that describes these called delta time zones. Table
17.8 shows a selection of its information.

Figure 17.16:
Local day object—
a zigzag pattern
space-time map

An object-oriented view of Table 17.8 sees GMT and local times as objects. The GMT
objects are temporal slices straight through the overall space-time object. The local
times objects, however, make zigzag slices through space-time, ‘overlapping’ with dif-
ferent GMT time objects in different countries. For example, the local 2nd January 1993
day starts with the 23:00 GMT event object in Austria and Portugal, but starts with the
24:00 GMT event object in the United Kingdom. This particular zigzag pattern is illus-
trated in Figure 17.16.

We do not necessarily need to change the model as a result of this analysis. If we are
happy with a locally consistent model, then we can say the days class (shown in Figure
17.13) has our local days as members. If, however, we want a globally consistent
model, we need to make some changes. We must model both the standard GMT time
objects and the various time zones’ local times objects. This involves explicitly model-
ling time zones.

Country Effective Dates Gmt Differences

Austria 01 Jan 1993 to 27 Mar 1993
28 Mar 1993 to 25 Sep 1993
26 Sep 1993 to 31 Dec 1993

+1:00
+2:00
+1:00

Portugal 01 Jan 1993 to 27 Mar 1993
28 Mar 1993 to 25 Sep 1993
26 Sep 1993 to 31 Dec 1993

 +1:00
+2:00
+1:00

United Kingdom 01 Jan 1993 to 27 Mar 1993
28 Mar 1993 to 23 Oct 1993
24 Oct 1993 to 31 Dec 1993

 +0:00
+1:00
+0:00

Table 17.8: Selected time zone information

UNITED KINGDOM

AUSTRIA

PORTUGAL
SPACE-
TIME

24:00 GMT
EVENT OBJECT

23:00 GMT
EVENT OBJECT

2nd
JANUARY

1993

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
7 The object model for temporal patterns 373

7 The object model for temporal patterns

We have now completed all the work on the temporal patterns object model. The
re-engineering of the entity formats for bank holidays and weekends gave us a general
model for some simple and basic temporal patterns—calendar periods and days of the
week. The brief look at our conceptual patterns has made us aware that existing sys-
tems only really capture the simple patterns. There is a range of more sophisticated pat-
terns that we need to model and generalise. However, the model, as it stands, is a good
basis for going forward. It is a strong foundation that can be built on and enhanced as
more re-engineering is done.

This example also illustrates an important aspect of re-engineering. It shows how the
object paradigm’s amalgamation of space and time to space-time reveals previously
common but mysterious temporal patterns as structural whole–part patterns. Bank holi-
days are revealed as the intersection of countries and days objects. Country weekends
are also revealed to be classes of temporal parts of countries. These examples show
how the reference of temporal patterns becomes much clearer when it is revealed as
four-dimensional extension. This also clarifies the sense of the patterns; many of the
connections between objects are revealed as structural extension-based patterns.

8 Summary

This is the last of the examples. Working through them has achieved a lot. Together
they have:

• Given us a feel for what re-engineering is like and the sort of models it pro-
duces,

• Shown us the details of a systematic approach to re-engineering the entity
formats in the existing system,

• Given us a feel for what analysing object semantics means in practice, and
• Illustrated how the object syntax and notation work on business examples.

In addition they have provided us with three object models:
• Spatial patterns,
• Temporal patterns, and
• Naming patterns.

These contain fundamental and general objects that can be re-used in our re-engineer-
ings.

This is not the final chapter; one more is left. In it, we briefly examine some of the chal-
lenges you will face when you set up a re-engineering project using this approach.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
374 Chapter 17 Re-Engineering Time

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Chapter 18
Starting a Re-Engineering Project

1 Introduction

2 Take a re-engineering approach

3 Establish priorities for the construction of fruitful, general, and so re-
usable patterns

4 Taking care to manage large projects in a generalisation-friendly way

5 Produce a validated understanding of the business

6 Object model the migration of business patterns

7 Summary

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
376 Chapter 18 Starting a Re-Engineering Project

1Introduction
Parts One to Five gave you an understanding of what business objects are. The previ-
ous chapters of this part of the book (Part Six) showed you how to apply this under-
standing, describing a systematic method for re-engineering an entity oriented system
into a business object model. Some of you will now be contemplating setting up a
project to re-engineer your entity oriented systems. You want the project to be a suc-
cess. This involves producing a good business object model and accurately embedding
it in an implemented system.

Inevitably a re-engineering project works in a different way from traditional system build-
ing projects. Its success depends, to quite a large extent, on managing it in a way that
recognises these differences. This chapter outlines five management tactics that I have
found help to make re-engineering projects a success. These are:

• Taking a re-engineering approach,
• Establishing priorities for constructing fruitful, general and so re-usable pat-

terns,
• Taking care to manage large projects in a generalisation-friendly way,
• Producing a validated understanding of the business, and
• Object modelling the ‘data’ translation/migration.

2 Take a re-engineering approach

It is important to approach the project as a re-engineering exercise. People sometimes
succumb to the temptation of thinking that they can only construct a radically new sys-
tem by ‘starting with a blank sheet of paper’. They want to ignore the existing system
completely, so as not to taint the new system with its mistakes.

While this tactic may have its merits when working within a paradigm, it is not re-engi-
neering. In fact, it is the wrong way of shifting to a new and better business paradigm.
Apart from the actual difficulty of ‘blanking out’ all knowledge of the existing system’s
patterns, this approach ignores the nature of re-engineering and evidence of how suc-
cessful re-engineerings have worked.

2.1 Salvaging investment in business patterns

A core feature of re-engineering is that it salvages the business patterns embedded in
the existing system. The great 17th century physicist Isaac Newton used a striking
image for this. He commented in Mathematical Principles (describing his re-engineered
physics) that his work was only possible because ‘he stood on the shoulders of giants’.
A new paradigm may be radically different, but it normally takes full advantage of the
investment in the patterns of the old paradigm. Building patterns from scratch takes a
substantial investment of time and effort and is just not practical in most situations.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Establish priorities for the construction of fruitful, general, and so re-usable patterns 377

This is why a re-engineering approach actively seeks out and re-engineers the business
patterns in the existing system, salvaging the investment made in them. We saw how
this worked in the examples in previous chapters. The re-engineering of the existing
system’s entity formats yielded radically different, useful, general patterns that formed a
foundation for the business object models.

From an economic point of view, the big benefit of the salvage approach is that it needs
much less investment than most other approaches. A systematic re-engineering
approach, such as that described in the previous chapters, salvages the existing sys-
tem’s investment in business patterns. The re-engineering project effectively starts with
this investment in hand.

2.2 A well-defined scope

Basing the project on the re-engineering of the existing system’s entity formats also pro-
vides a simple and effective way of scoping the project. From a management control
point of view, it is important to have a reasonably clear idea of the boundaries of the
project. The existing system’s business patterns provide just that. We can define the
scope in terms of the entity formats in the existing system that hold these patterns
(things such as files and records). It is a simple matter for us to list these, giving the
project a clear-cut boundary.

If we did not have a clear-cut boundary, there could be problems. Objects tend to be
closely linked to a number of other objects. Their webby nature means that they have
few, if any, natural boundaries. If we were to keep on analysing them until we found a
natural boundary, we would end up constructing a model of everything.

You may want the project to include in its scope some business patterns that are not
embedded in the existing system (in other words, new requirements). These can be
associated with a related pattern that is embedded, and the patterns re-engineered
together. Time zones (from the re-engineering of temporal patterns in Chapter 17)
could be considered an example. If they were within the scope, but not embedded in the
existing system, then we could associate them with either the bank holiday or weekend
patterns, which are. The two sets of patterns could then be re-engineered together.

However, it makes sense to try and schedule the development of specific new require-
ments after the re-engineering project. Re-engineering delivers significant amounts of
extra functionality as well as a new way of seeing the business. When this takes shape,
the original ‘new’ requirements may already be satisfied or have taken on a completely
new meaning.

3 Establish priorities for the construction of fruitful, general, and
so re-usable patterns

An important benefit of the object paradigm that it enables us to construct fruitful, gen-
eral and so re-usable patterns. However, to get these patterns, we have to actively

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
378 Chapter 18 Starting a Re-Engineering Project

exploit the paradigm. This means establishing priorities for the construction of re-usable
patterns.

3.1 Establishing priorities for the construction of general, and so re-usable patterns

The worked examples in the previous chapters illustrated how vital generalising is to
successful business object modelling. The more general a pattern, the more potentially
re-usable it is and so more useful.

3.1.1 Generalisation produces a compact system

Generalisation’s usefulness comes, in part, from its ability to compact. It enables a large
number of base patterns to be re-engineered into a much smaller number of simpler
more general patterns. In essence, it fits more information into a smaller space (illus-
trated graphically in Figure 18.1).

Figure 18.1:
Generalisation fits
more information
into a smaller
space

3.1.1.1 Generalisation leads to less costly components

In computing terms, generalisation’s compacting means fewer, simpler components.
Compacting works its way through the development life cycle. Compacting during busi-
ness object modelling leads to fewer components in the business model, and this trans-
lates into fewer components at all the later stages of system building. There are fewer
and simpler components to specify during systems analysis and design and so fewer
and simpler components to code and test. This in turn means fewer and simpler compo-
nents to maintain and fix. Furthermore, when people start to learn the system, there are
fewer and simpler components to master. Overall, the effort required to build and main-
tain the system is reduced. This translates into a reduction in time and cost. So systems
with generalised components are quicker and cheaper to both build and maintain.

BASE PATTERNS

LEVEL
OF

GENERALITY

HIGH

LOW

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Establish priorities for the construction of fruitful, general, and so re-usable patterns 379

3.1.1.2 Generalisation means no inherent complexity

An important consequence of using generalisation as a core tool in system building is
that we can no longer think of a pattern having an inherent complexity. We are used to
thinking that a complex set of business patterns needs a computer system of equivalent
complexity. With generalisation, this rule of thumb no longer works. The worked exam-
ples have shown us how, using a combination of re-engineering and generalisation, we
can transform complex patterns into simpler, more powerful, general patterns. This may
initially seem slightly counter-intuitive, but it is a natural way of working. It is, for exam-
ple, the way in which science accumulates knowledge. If we look at its history, we see
again and again a complex theory being superseded by a simpler, more powerful, the-
ory.

Part of what is going on is that as we generalise the patterns, their scope increases.
This is shown schematically in Figure 18.2. Here, the patterns, #1 and #2, are general-
ised into pattern #A, which covers the same scope as #1 and #2.

The number of patterns needed for the full scope has halved from two to one. However,
this is only part of the story. In actual re-engineerings, the generalised pattern often
turns out to be simpler. We saw this in the model for spatial patterns. After re-engineer-
ing the first group of entity formats, the final model not only has fewer objects (at the
application level), but is also simpler. The power of the spatial model was revealed in
re-engineering of bank address in Chapter 16, where no new business objects were
needed.

Figure 18.2:
Generalisation cre-
ates patterns with
increased scope

3.1.1.3 The impact on estimating

This lack of inherent complexity has a serious impact on the way in which we estimate
re-engineering projects. In traditional estimating, a sensible rule of thumb is that there is
a reasonable correlation between the complexity of the requirements and the effort (and
so cost) of building the system. This assumes that complexity is unaffected by the sys-
tem building process. The complex pattern that goes into the process inevitably leads to

LEVEL
OF

GENERALITY

HIGH

LOW
#1 SCOPE

#1 #2

#2 SCOPE #1 SCOPE

#1

#A

#2

#2 SCOPE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
380 Chapter 18 Starting a Re-Engineering Project

complex code. This made estimating relatively easy. The resources needed to build a
system could be calculated from the complexity of its requirements.

With generalisation, this is no longer true. The business modelling process can signifi-
cantly reduce the complexity of a pattern. Two patterns, one complex and the other sim-
ple, may both be re-engineered into the same simple pattern. This happened in the
worked examples with the simple country pattern (in Chapters 12, 13 and 14) and the
more complex address pattern (in Chapter 16). We re-engineered both entity formats
into the same general pattern – which will end up as the same computer code. The
complexity of the requirements no longer correlates well with the resources needed to
build the system.

It might seem that the correlation still applies within the business object modelling
stage. It is certainly true that a complex pattern can take longer to model than a simpler
one, other things being equal. However, other things are not often equal. For example,
the re-engineering of the simple country pattern took much longer than the re-engineer-
ing of the more complex address pattern, because we could match the address patterns
with the re-engineered country patterns. The estimation of effort can no longer be based
simply on the complexity of a requirement.

With experience, one acquires a rough feel for how much compacting to expect from a
group of patterns, and can translate this into a rough estimate. I suspect it will be some
years before there is enough hard data to work out a formula. This makes accurate esti-
mating difficult. The bright side is that as generalisation compacts and simplifies, so
building a system from a generalised business object model takes less time and effort
than building it from an ungeneralised model.

3.1.2 A generalisation friendly environment

Generalisation brings benefits, but how do we encourage generalisation? People natu-
rally and unconsciously generalise patterns. However, without a framework to help
them, this instinctive tendency does not normally lead to very general patterns. The
object paradigm remedies this by providing a generalisation friendly environment, within
which a systematic approach can encourage more general patterns.

Traditional methods of system building do not have access to the compacting power of
generalisation. They do not provide an environment that is conducive to producing gen-
eral objects and so have no reason to make generalisation a priority. A good, and wide-
spread, example of this is common subroutines. Analysts and programmers naturally
recognise their potential. They naturally construct reasonably general subroutines dur-
ing system building. However, traditional approaches to modelling processes, such as
functional decomposition, hinder rather than help this natural process. Analysts have to
rely on their instinct and initiative and ignore the approach.

One particular experience of this sticks clearly in my mind. Many years ago one of the
projects I was managing was a large development, using the popular SSADM method.
Towards the end of the analysis stage, a lead analyst told me he was going to start iden-
tifying common subroutines. After some discussion, it became clear that he was in
uncharted (though familiar) territory. This task was not identified by the method; so, he

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Establish priorities for the construction of fruitful, general, and so re-usable patterns 381

had not put it in his plan. Yet, he realised it needed to be done. The method had no sys-
tematic techniques to help him, so he had to rely on his intuition.

When he discovered common subroutines, he found that they could not be described
either in the method’s (data flow diagram) functional decomposition structure or in the
CASE tool he was using. The root of the problem was that neither of them could model
the way two processes use the same common subroutine—what could be called re-
composition. They could handle de-composition’s tree structure, but not re-composi-
tion’s lattice structure. Given that common subroutines depend on re-composition, this
meant functional decomposition actually hindered this type of generalisation.

By contrast, a re-engineering project not only supports generalisation, but also has a
systematic approach that actively encourages it. In this environment, it makes sense for
project managers to make generalisation one of the top priorities. However, old habits
die hard. Modellers used to a traditional environment do not naturally push generalisa-
tion as far as it should go. Project leaders can help ensure successful generalisation by
actively checking how much of it is going on and persuading modellers to do more when
it is needed.

3.1.3 Introducing generalisation during business modelling

A general theme running through many approaches to building computer systems is
that the earlier in the system development life-cycle we introduce a good technique, the
greater the benefits. This not only feels intuitively correct for generalisation, it is cor-
rect—the best time to generalise is during business modelling. However, as the tale of
the lead analyst identifying common subroutines above illustrates, system builders often
generalise later in the life-cycle.

Figure 18.3:
Introducing gener-
alisation at differ-
ent life-cycle
stages

Business
Modelling

Systems
Analysis

System
Design

and Build

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

t
s

Generalisation
Introduced

Cost of
Lost Opportunity

A
oi ra

necS

Scenario B

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
382 Chapter 18 Starting a Re-Engineering Project

3.1.3.1 Economically sensible to generalise business patterns early

It is reasonably obvious that the earlier generalisation is introduced into the develop-
ment life-cycle, the greater the reduction in overall effort. We can visualise this by think-
ing in terms of the reduction in the number of system components. Figure 18.3 shows a
simplified schema of this.

If generalisation is introduced at the business modelling stage (shown as scenario A in
the schema), the benefit of compacting is delivered from the beginning of the life-cycle.
The compacted business components are used in system analysis and on into system
design and build.

If, however, generalisation is introduced at the system design and build stage (shown as
scenario B in the schema), then the reduction in components only occurs then. (For
simplicity’s sake, it is assumed that the final reduction in scenario B is equivalent to sce-
nario A.) The reduction in costs associated with compacting only starts appearing then;
it does not happen during business modelling or systems analysis. The cost of this lost
opportunity is shown in the schema by the shading between scenarios A and B. The
earlier we compact the components, the greater the reduction in costs. The later we
compact the components, the greater the cost of the lost opportunity.

3.1.3.2 The natural stage to generalise business patterns

As well as the ‘economic’ cost reasons for generalising business patterns during busi-
ness modelling, there is also a sound practical reason for generalising them at this
stage—it is the natural stage to do it. We use similarity to generalise business patterns.
Finding this similarity is more naturally done at the business modelling stage, while we
are looking at the objects in the business (illustrated in Figure 18.4). In the later stages,
when we turn our attention away from the business and towards the system, the busi-
ness patterns are not so visible.

Figure 18.4:
Similar business
patterns

ALI RM ?I ?S

ILAM RIS

ACCOUNT

DEAL

SIMILAR
SYSTEM PATTERNS

SIMILAR
BUSINESS PATTERNS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Establish priorities for the construction of fruitful, general, and so re-usable patterns 383

3.2 Establishing priorities for the construction of fruitful patterns

Generalisation and fruitfulness can be seen as two sides of the same coin. A fruitful pat-
tern can either be sufficiently general to be re-used frequently or sufficiently similar to
many other patterns to be generalised into a common pattern. While we can systemati-
cally generalise, fruitfulness is more elusive. It is a kind of potential for generalisation—
an ability to deal with future patterns that have not been modelled as yet.

3.2.1 Fruitfulness during and beyond a project

This fruitfulness shows itself in two ways—within the scope of the project and outside it.
While a project is in progress, the team can see how a fruitful pattern leads to high lev-
els of generalisation. Its potential fruitfulness becomes actual before their eyes as the
re-engineering reveals generalisations. But does this potential only extend as far as the
agreed scope? If the scope were widened, would the pattern’s fruitfulness suddenly dry
up?

Our experience is that it does not. Where a pattern has been fruitful within a re-engi-
neering project, its fruitfulness always seems to extend well beyond the scope of the
project. One way this reveals itself was mentioned in the Preface. There, I described
my experience of users finding that their re-engineered system could handle situations
not in the scope, including situations they did not even envisage when the system was
developed.

The naming and spatio-temporal patterns in the previous chapters provide another
example. They were fruitful outside their initial scope. For example, the fruitfulness of
the naming and the nesting geo-political area patterns was clearly shown in the re-engi-
neering of address. They effectively matched all the address patterns. In my experi-
ence, the naming and spatio-temporal patterns are also fruitful outside the scope of the
worked examples. I have found their patterns re-appearing in many re-engineerings.
(You might remember it re-appeared in the bank holiday example in the last chapter.)
This often means that future business requirements are either already catered for by the
system or can be relatively easily dealt with.

3.2.2 Building fruitful patterns from complex entity formats

Seeking out fruitful business patterns is a sensible goal for a re-engineering. However,
taking this as a goal, overturns a rule of thumb in traditional system building. We
touched on this point when capturing the conceptual patterns for country in Chapter 14.
There we noted a tendency to favour dropping complex patterns when setting the scope
of a project,. In a traditional environment, this makes sense because they take more of
an effort to build. In an object-oriented environment, it does not. It is not that complex
patterns no longer necessarily take more resources to build. It is that complex patterns
are more likely to have fruitful patterns embedded in them. These fruitful patterns are
the Holy Grails of business modellers; the more that can be found the better.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
384 Chapter 18 Starting a Re-Engineering Project

3.2.3 More accurate patterns are more fruitful

There is another way to increase the fruitfulness of the business patterns, and that is to
make them more accurate. In Chapter 1, we looked at how increased physical accu-
racy was essential to the introduction of interchangeable parts in manufacturing. We
observed that a similar revolution in accuracy—this time, accurately reflecting the
world—was necessary for the introduction of interchangeable parts in business model-
ling.

In later chapters, we saw how this accuracy has increased as information paradigms
evolved. We saw, for example, that modern literate western culture has more accurate
notions of sameness and signs than the Huichol Indians, who see corn and deer as the
same (we discussed this in Chapter 4. We discussed how western culture is now devel-
oping an understanding of the logical paradigm’s more accurate distinction between the
whole–part, super–sub-class and class–member patterns. And how it has started to
absorb the object paradigm’s notion of sameness for four-dimensional objects. It is in
the process of providing an accurate explanation of how something now is the same as
it was yesterday; it no longer has to be both the same and different, much like the Hui-
chol’s corn and deer.

When we business object model, it is important that we take advantage of the object
paradigm’s ability to produce more accurate patterns by using them to construct more
general and reusable patterns. Just as physical accuracy enabled interchangeable
reusable parts, so referential accuracy encourages the information paradigm’s counter-
part—generalisation and re-use. Increased accuracy reveals the patterns more explic-
itly, taking the guesswork out of whether patterns are similar or not. The general
patterns constructed from more accurate lower level patterns inherit their accuracy and
so are able to operate at higher levels of generality.

So it makes sense for the manager of a re-engineering project to try and determine
whether his modellers are being referentially accurate. And if they are not, to take reme-
dial action. This should help to ensure the fruitfulness of the patterns.

3.2.3.1 Object model’s lower granularity

Increased referential accuracy also leads to a lower granularity in the descriptions of
patterns—which initially means more objects. If you look at the early version of the spa-
tial model in Chapters 13 and14, you can see that the re-engineering increased the
number of operational items. From this, it might appear that we have to weigh the bene-
fits of increased accuracy against the cost of handling a larger model. But, it turns out
we do not. The increase in accuracy leads to a corresponding increase in generalisa-
tion, which reduces the number of application objects significantly.

In the region example in Chapter 14, the generalised patterns made almost all the pat-
terns from the re-engineering of the country example redundant; this was only the sec-
ond file re-engineered. In the first stage of the address example in Chapter 15, no new
application objects were re-engineered. It is these application objects that the system
builders construct. Once the re-engineering gets beyond a few entity formats, at the
application level, the compacting effects of generalising more accurate patterns more
than outweighs the expanding effects of their lower granularity.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Taking care to manage large projects in a generalisation-friendly way 385

3.2.3.2 Learning to see accurately

Learning to see with the referential accuracy demanded by the object paradigm is one
of the most challenging aspects of business object modelling. It is important for the suc-
cess of the project that the people undertaking the business modelling have mastered
the challenge and learnt to see in this new way. It also helps if the people carrying out
the systems analysis have at least a broad understanding of business objects.

Managers should ensure that the people working on their project have the right level of
understanding. For the people that need training, this book is one way of providing a
useful grounding in business object modelling. It can be usefully supplemented by for-
mal training courses. However, once people have mastered the foundations, there is no
real substitute for experience on a real project. At this stage, the easiest way to
progress is by working with expert practitioners, learning by example.

This generally means that IT departments starting out on a project have to either buy in
or grow experts. If the decision is to grow, then it is only sensible for inexperienced peo-
ple to cut their teeth on a trial project in a non-critical area of the business. Their learn-
ing can be speeded up considerably if the team is beefed up with an expert mentor.

4 Taking care to manage large projects in a generalisation-friendly
way

To take full advantage of the benefits generalisation brings, we need to manage it. In
large projects, it is particularly easy to stifle the potential for high levels of generalisa-
tion. To create a stable generalisation-friendly environment, we need to ensure the care-
ful management of the balance between the increased opportunity for generalisation
that comes with widening the scope and the increased risks associated with large
projects.

4.1 Widening the scope increases the opportunities for generalisation

Each new business pattern added to the scope of a re-engineering project brings an
opportunity for generalisation. We saw an example of this in Chapter 15’s re-engineer-
ing of region. Extending the scope of the re-engineering from country to region enabled
us to generalise both patterns to geo-political area. Though it may seem counter-intui-
tive, widening the scope led to a smaller, more general and powerful model rather than
a bigger one.

The more conceptually powerful the model, the more pronounced this effect. The model
does not have to grow in size or complexity as we add patterns, we can generalise and
make it smaller and simpler instead. When we introduce new patterns to a generalised
model, the likelihood of us being able to generalise them is higher. This is because the
model’s general patterns are more likely to match with the new patterns.

This also means that the more general the model, the smaller the cost of re-engineering
each new pattern is likely to be. We saw an example of this in address’s re-engineering

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
386 Chapter 18 Starting a Re-Engineering Project

in Chapter 16. The spatial model was sufficiently general that the new business pat-
terns introduced in the address entity formats all matched with existing patterns. There
were no new patterns; so, the cost of building new computer code for the address busi-
ness patterns would be nil!

This is the complete opposite of what happens in traditional system building, where
generalisation is not properly supported. There we have to harmonise each additional
pattern with the existing patterns, adding to the complexity of the system. As the
number of patterns in the system increases, the task of harmonisation gets more oner-
ous. The traditional rule of thumb is that the more patterns there are, the greater the
cost of handling each new pattern. The difference between traditional system building
and system building using business object modelling is shown graphically in Figure
18.5 (this is a reproduction of Figure P.5.)

Figure 18.5:
Correlation
between scope
and complexity

4.2 Balancing the economies of scope against the problems of size

This would seem to imply, at least in theory, that it is better to have as wide a scope as
possible in a re-engineering project, because this will keep the costs of building the sys-
tem down. To an extent this is correct, because the wider the scope the greater the
opportunity for generalisation. But as the scope increases, so does the size of the
project. And a large project brings increased risks.

The scope of re-engineering projects is defined in terms of the entity formats of an exist-
ing system. If the system is small, it has few entity formats and so can be re-engineered
in one go. Doing it piecemeal would just take longer and demand more effort. When a
large system is re-engineered the situation changes. The scope includes many more
entity formats. Re-engineering them all in a single project usually takes either many
years, a large team or both.

Narrower

Traditional
Entity
Modelling

Object
Modelling

Wider

Lower

Higher

C
O

M
P

L
E
X

IT
Y

/
S
IZ

E

SCOPE / FUNCTIONALITY

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Taking care to manage large projects in a generalisation-friendly way 387

However, the longer a project lasts and the larger the number of people involved, the
more difficult it is to manage. If it gets very large it is much more likely to end up out of
control. Furthermore, you cannot guarantee that, after all the man years of effort, the
system will actually work. So, when re-engineering large systems, we need to balance
the benefits of a wide scope against the inherent risks in a large project.

4.3 Chunking the existing system

In practice, people tend to redevelop large systems bit by bit. It is like the child’s riddle—
‘How do you eat an elephant?’ The answer is ‘in bite-sized chunks’. By dividing the sys-
tem into manageable (digestible) chunks, we can keep things under control. As we
implement chunks at regular intervals, we are giving tangible evidence of progress.
Management can see the results of their investment reasonably soon after they make
it—instead of waiting until the end of the overall project.

One problem has to be overcome in this approach. A system, by its very nature, is an
interconnected coherent whole. When we redevelop a chunk, we have to fit it in with the
existing system, if it and the system are to work together. However, if we design the new
chunk to work with the old system, it will probably inherit some of the structure of the old
system.

The standard tactic in traditional system re-development for dealing with this problem is
to design the new chunk to work unencumbered by the existing system. Then, to get the
two to work together, a temporary interface is built that handles the connections
between the old and the new. As each new chunk is redeveloped, it permanently links
up with the other new chunks and connects to the old system through a new temporary
interface. When all the chunks are redeveloped there is no longer a need for a tempo-
rary interface. This is shown schematically in Figure 18.6.

Figure 18.6:
Eating the problem
in bite-size chunks

4.4 The object re-engineering approach to chunking

When I have been involved in the re-engineering of large systems, the team has fol-
lowed the standard practice of chunking. We divided the overall project into a number of
subprojects, each dealing with a chunk of the existing system. But we did not re-engi-
neer each chunk in isolation. If we had, this would have restricted the scope of each re-
engineering to its chunk, losing the potential for generalising patterns across chunks.

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM

Sub-Project #1 Sub-Project #2 Sub-Project #3

CHUNK #2

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM

CHUNK #3

CHUNK #2

CHUNK #1

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
388 Chapter 18 Starting a Re-Engineering Project

Instead, we adopted a different approach. As we re-engineered the chunks in turn, we
included the scope of all the previous chunks. This meant that by the time we came to
the last chunk, the scope of the re-engineering was the whole existing system (illus-
trated in Figure 18.7). In this way, we took full advantage of the power of generalisation
across a wide scope, without the risks associated with a large project.

Figure 18.7:
Re-engineering
combined chunks

In a traditional environment where there is little generalisation, this approach would
make little sense. If, when the first chunk was re-developed, its requirements were
included in the scope of the second chunk, then this would effectively double the size of
the chunk. Adding in more chunks as they were re-developed to subsequent chunks
would treble, quadruple, and so on, their size. This would lead to larger and larger
projects, defeating the whole purpose of chunking.

Figure 18.8:
Compacting com-
bined chunks

However, in an object-oriented environment, the approach is sound. When we re-engi-
neer a chunk, we generalise and compact its business patterns. So, when we widen the
scope to include the re-engineered patterns from the earlier chunks, this does not lead
to a substantial increase in the actual number of patterns. The earlier chunks’ patterns
are general; so, it leads to a substantial increase in the opportunities for generalisation.
As a result, adding in earlier chunks does not substantially increase the size of individ-
ual chunks. In some cases it can actually substantially reduce the size of the re-engi-
neered chunk (illustrated schematically in Figure 18.8). By the time we get to the last

CHUNKS
#1, #2
& #3

CHUNKS
#1 & #2

TEMPORARY INTERFACE

TEMPORARY INTERFACE

CHUNK #1

EXISTING
SYSTEM EXISTING

SYSTEM

Sub-Project #1 Sub-Project #2 Sub-Project #3

Sub-Project
#1

Sub-Project
#2

Sub-Project
#3

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

t
s

C
H

U
N

K
#

1

C
H

U
N

K
#

2
#

1

#
1

&
2

#
1

&
2

#
1

,2
&

3

#
1

C
H

U
N

K
#

3

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Taking care to manage large projects in a generalisation-friendly way 389

chunk, the scope has widened to the whole system without any of the sub-projects
being any larger than they would have been in a traditional system building project.

4.5 The benefits of chunking

One of the big benefits of this kind of chunking is that there are multiple opportunities to
get a pattern right. After each combined chunk is implemented, the modellers get a
chance to see how their patterns are performing in a live system. This suggests
improvements that they can incorporate into the re-engineering of the next combined
chunk. Each redeveloped chunk, except the final one, can be treated as a prototype for
the next chunk of redevelopment.

This encourages the development of fruitful patterns. People are unlikely to find the
most fruitful general patterns at the first attempt. To some extent, they have to go
through a process of trial and error. And chunking offers a controlled environment for
trying out the patterns and finding any errors. The opportunity to have a second, third
and even fourth chance to construct the right pattern, and to see each attempt in live
operation, significantly increases the chance of constructing a fruitful general pattern.

This goes against the grain of the mind-set associated with traditional approaches.
Because these normally only allow one attempt at constructing the right pattern, great
store is set on finding a strong rigid fixed pattern that lasts the whole of the redevelop-
ment and beyond. The object approach turns this value judgement on its head; in a re-
engineering, fixed patterns are bad. If a pattern remains fixed, then this is probably
because it is not being generalised. Under the object approach, the goal becomes gen-
eralising patterns rather than finding fixed ones.

4.6 Choosing chunks

One awkward management decision is deciding how to chunk up the existing system.
There are many factors to weigh up, and these vary from system to system. One impor-
tant factor is the type of information passing between the candidate chunks. If we
choose chunks that have only a few types of information passing between them and the
rest of the system, then we keep the ‘complexity’ of the temporary interface low.

Another factor is encouraging generalisation by putting similar patterns together in the
same chunk. For example, most modellers familiar with the financial sector would be
able to guess that the securities and currencies patterns are similar. If we were to allo-
cate these patterns to the same chunk, then this would encourage their generalisation
to the financial asset pattern (illustrated in Figure E.6).

Most systems naturally fall into a number of modules; often, these are a reasonable
basis for chunking. This still leaves open decisions on whether to have each module as
a small chunk or group modules together into bigger chunks. However, someone with a
working knowledge of the system should be able to have a good stab at chunking, once
they understand the principles of the re-engineering approach.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
390 Chapter 18 Starting a Re-Engineering Project

4.7 Scheduling the sub-projects with the overall project

One management task is planning how the schedule for the chunked sub-projects will fit
into the overall project. The simplest schedule has each chunk completely redeveloped
and implemented before the next (combined) chunk is started (shown in Figure 18.9).

Figure 18.9:
A simple sequen-
tial pattern for the
overall structure

If there are tight time constraints on the overall project, then this is probably not the best
schedule. In this situation, it is sensible to overlap the chunked sub-projects. One solu-
tion is to overlap them within a life-cycle stage (shown in Figure 18.10). When the busi-
ness modelling stage is complete for the first chunk, the systems analysis stage is
started. At the same time, business modelling starts on the second chunk, including the
compacted business model from the first chunk.

The perceived benefit of overlapping the sub-projects is that the overall project takes
less time than if the sub-projects were to follow one after another in sequence. How-
ever, when the sub-projects are overlapped, the experience from implementing one
sub-project no longer feeds back into the business modelling of the next. Project man-
agers need to weigh up the relative benefits of sequencing or overlapping the sub-
projects for their particular overall project.

Figure 18.10:
An overlapping
pattern for the
overall structure

TIME

Chunk #1

Chunk #1&2

Chunk #1,2&3

TIME

Chunk
#1

Chunk
#1&2

Business
Modelling

Sequential
Chunks
Project
Timescale

Overlapping
Chunks
Project

Timescale

System
Analysis

System
Design

System
Coding

Chunk
#1,2
&3

Time
Saving

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
4 Taking care to manage large projects in a generalisation-friendly way 391

4.8 How to order the individual chunk sub-projects

It is important to consider the order of the individual chunk sub-projects as well as their
overall structure. To some extent, this is dictated by the demands of the business. If a
particular chunk contains new functionality that is critical to the business, naturally it is
given a high priority.

However, the dependencies between business patterns also dictate, to some extent,
the order of re-engineering for chunks and entity formats within chunks. For instance,
transaction entity formats should, in general, be re-engineered after ‘static data’ entity
formats. This is because the business patterns in transactions tend to depend on the
patterns in ‘static data’.

We shall see an example of this in the re-engineering of an accounting transaction in
the Epilogue. Its patterns depend on the ‘static data’ person and asset patterns, but not
vice versa. In a ‘real’ re-engineering, it would make sense to re-engineer this static data
before the accounting transaction.

When planning the order of the individual sub-projects (and the order of the entity for-
mats within the sub-project), it makes sense to take account of the dependencies
between the business patterns and to plan to re-engineer the dependent patterns after
the patterns they depend on.

These dependencies between patterns are not just a feature of object systems. They
are reasonably well-known in larger traditional systems. I have come across a number
of package systems that explains the dependencies between data in their start-up doc-
umentation, saying, for instance, that company data depends on the correct country
data being available. These dependencies are then used to suggest a schedule for set-
ting up data in the system.

4.9 Ephemeral documentation

Because this approach treats all chunks, except the final one, as prototypes for the next
chunk, this raises a tricky issue for system documentation. Unlike traditional
approaches, the re-engineering approach expects the early (prototype) chunks to
change significantly as their patterns are generalised. This means that the documenta-
tion for these chunks is ephemeral, going out-of-date when the next chunk is re-engi-
neered. So, producing full documentation for each chunk seems like a costly waste of
time. But this has to be set against the problems of running the implemented chunks in
a live system without all the documentation. And the problem applies to all the types of
documentation; both business model and system.

It is sensible when planning the project to specify the types of ephemeral documenta-
tion that will be produced during the re-engineering of the prototype chunks, balancing
the cost of producing it against the benefit it brings. Also, the plan for the final chunk
needs to contain the task of producing the full set of documentation. Then, everyone
can be clear about what documentation has to be produced when.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
392 Chapter 18 Starting a Re-Engineering Project

When assessing whether particular types of ephemeral documentation should be pro-
duced, we need to consider its uses, both in live operation and the system building
process. It makes sense to produce documentation that is key to either of these. For
example, it could be argued that producing tidied up versions of the object schemas is
not particularly important to the live operation of the system. However, I have found that
trying to produce presentable versions often brings to the surface useful insights,
improving the quality of the business model. For this reason, I usually suggest that they
are produced.

5 Produce a validated understanding of the business

Industry studies seem to show that a large number of the errors found when systems
are implemented are because of misunderstandings about what the business required
rather than errors in coding. These types of errors are, for the most part, avoidable in a
re-engineering project. The re-engineering should produce a business model that
reflects the business patterns accurately. And, in theory at least, these should not need
to be changed during the system building process. Nor should they lead to errors in the
implemented system.

However, I have found that object schemas on their own do not provide a complete
enough check on the accuracy of the patterns in the business model. They are a potent
tool for making visible the patterns we use to understand the world. They take advan-
tage of the human brain’s ability to spot any out-of-place shapes in the patterns. But,
despite all this, they do not provide as complete a check on the accuracy of the patterns
as required. I find that I need to build a validation system to give myself a reasonable
confidence that the reflections are accurate.

5.1 Building a validation system

The validation system is the business model translated into a database and populated
with a representative sample of operational objects. I use the existing system as my pri-
mary source for the operational objects, migrating its data onto the validation system.
For small files, I migrate all the operational data; but, with the larger files, I usually only
migrate a representative sample. Where possible, I migrate the data automatically. I
also load up any new operational ‘data’ found during the analysis of conceptual patterns
(an example would be England and the other nested countries in Chapter 14’s country
re-engineering).

The validation system does not require sophisticated technology and should not involve
much effort. It can be built within a CASE tool (if one is being used) or constructed on a
simple computer database. (I have found that non-object-oriented PC databases are a
cheap and effective solution.)

I normally construct the validation system as I am doing the modelling, translating and
migrating the data from the existing system as I re-engineer its entity formats. This usu-
ally brings up issues, which I can resolve there and then. When sufficient data has been
migrated, I produce reports and enquiries from the validation system. This enables me

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Object model the migration of business patterns 393

to touch and feel each bit of the model as it grows; there is no real substitute for this. I
can often see immediately whether something works and change it if it does not. In
addition, most users have found these reports and enquiries a more accessible way of
checking the model than object schemas.

The key benefit from constructing the validation system is that inaccurate reflections of
business patterns are found and fixed before any time has been spent building them
into the system. This helps avoid the frustrating experience common in traditional sys-
tem building, that is, finding resources have been wasted building inaccurate business
patterns. Using a validation system significantly reduces the level of these errors, mini-
mising the wasted resources.

6 Object model the migration of business patterns

A re-engineering project, by its nature, involves the migration of business patterns from
the existing system to the new object system. These will be application level patterns,
such as countries, and operational level patterns, such as United States. If the business
paradigm embedded in the final system does not accurately reflect the business model
(and so the real world), then much of the model’s power can be lost. One way of ensur-
ing that this does not happen is having a sufficiently formal and accurate specification of
how the business patterns are migrated. I do this by constructing an object model of the
migration.

6.1 Tracing the migration of application level business patterns

The business model produced by the re-engineering process contains an accurate
reflection of the business. It should be embedded in the final system. However, I have
found that a common problem with the embedding is that some system analysts and
designers treat the business model as a proposal rather than a formally defined input
into the process. They assume that they can exercise their judgement to pick and
choose what to embed and amend as they see fit.

This is, in my experience, a general problem for all business models—not just object
models. But with an object model, it is a sure-fire way of losing the benefits of business
object modelling. The object model is a tightly connected system. Fiddling with bits of it,
particularly by someone who does not understand the business patterns, is almost cer-
tain to have a deleterious effect on the whole structure.

This is not to say that systems analysts and designers should be discouraged from find-
ing inaccuracies in the business model—quite the opposite. But if they do find what they
consider to be an inaccuracy, business modellers should check it. If it is a real inaccu-
racy, the more accurate pattern should be applied to the business model and it should
work its way through normal channels to the systems analyst and not unilaterally
applied to the system specification.

I have found that the simplest way to ensure that the business model’s accurate pat-
terns are embedded unchanged in the final system is to provide a system for confirming

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
394 Chapter 18 Starting a Re-Engineering Project

that this has been done. I model the business patterns’ translation into the system
model and onwards into the implemented system. This translation model provides
traceability. We can trace the migration of the patterns from the business object model
to the implemented system. Any unauthorised changes are brought to light. The formal
nature of the translation model also means that the checking can be automated.

6.2 Modelling the migration of application level business patterns

The simplest way to model the migration of the application level business patterns is to
extend the business object model to include the translation of the patterns into the
implemented system. The first step is to extend the meta-model. Then as a second
step, these two extensions are populated.

We need two extensions to the meta-model. The first is a system object model for the
paradigm used by the implemented system. The second is a general translation tuple
that has as members the tuples connecting the objects in the business model and the
objects in the implemented system model. The result is illustrated in Figure 18.11.

Figure 18.11:
Extended applica-
tion level migra-
tion model

It is worth bearing in mind that the business object model is technology independent.
This means, among other things, that it can be implemented on any technology. It can
be implemented into an object database, a relational database or even simple flat files.
It can be implemented in an object-oriented programming language, such as C++ or
Smalltalk, or it can be implemented in a traditional language, such as COBOL. How-
ever, each of these implementations requires its own system meta-model in the migra-
tion model.

6.3 Modelling the migration of operational level business patterns

In a re-engineering project, we need to migrate the operational level business patterns
as well as the application level patterns. I normally do this twice. I do this once during

A
P

P
L
IC

A
T

IO
N

L
E
V

E
L

F
R

A
M

E
W

O
R

K
L
E
V

E
L

COUNTRIES

COUNTRY

TRANSLATION TUPLES

BUSINESS
OBJECTS

BUSINESS
OBJECT
MODEL

TRANSLATION
TUPLES

SYSTEM
OBJECT
MODEL

COUNTRIES

COUNTRY

SYSTEM
OBJECTS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
6 Object model the migration of business patterns 395

business modelling, when I populate the validation system with operational objects
(described earlier); and then a second time at implementation, when I populate the
implemented system with relevant (operational) static data (items such as currency and
clients). These operational objects come, for the most part, from the existing system.

We normally re-engineer a few representative operational objects from the existing sys-
tem to provide us with the basic patterns from which we generalise the application level
patterns. For example, in Chapter 12 we re-engineered the individual objects, the
United States and the United Kingdom, and generalised them into the countries class.
However, the validation and implemented systems need many more operational objects
than the re-engineering.

I have found that it helps me to manage the migration of this large number of opera-
tional objects, if I model its general patterns. I do not describe each individual opera-
tional object’s migration pattern; instead, I use a representative sample to construct
general ‘application level’ migration patterns. These then constitute a migration specifi-
cation I can use for all the operational objects.

My first step is to extend the business object meta-model. I extended it for the target
system (either the validation system or the implemented system), when I set up the
‘system’ for checking whether business patterns were properly embedded in the imple-
mented system. (This was described in the previous section and illustrated in Figure
18.11.)

So I now extend the meta-model to include the existing system, the prime source for
operational objects. I also include a general translation tuple linking the existing sys-
tem’s entities to the business objects. Figure 18.12 provides an idea of what the
extended meta-model would look like.

The second step is to model the migration of some representative operational objects
and to discover the basic patterns for application level migration. These are migration
‘rules’. I use them to specify how the operational entities from the existing system can
be correctly embedded in the target system. I sometimes use them as a model for an
automated migration process. Either way, they greatly simplify the migration of data
from the existing system to the new system.

Figure 18.12:
Extended opera-
tional level migra-
tion model

COUNTRIES

COUNTRY

COUNTRIES

COUNTRY

SYSTEM
OBJECTS

BUSINESS
OBJECTS

A
P

P
L
IC

A
T

IO
N

L
E
V

E
L

O
P

E
R

A
T

IO
-

N
A

L
L
E
V

E
L

F
R

A
M

E
W

O
R

K
L
E
V

E
L

EXISTING
SYSTEM'S

ENTITY FORMATS

BUSINESS
OBJECT
MODEL

BUSINESS OBJECT TO
SYSTEM OBJECT

GENERAL TRANSLATION TUPLES

SYSTEM
OBJECT
MODEL

BUSINESS OBJECT TO
SYSTEM OBJECT

GENERAL TRANSLATION TUPLES

ENTITY FORMAT
TRANSLATION TUPLES

SYSTEM OBJECT
TRANSLATION TUPLES

UNITED
STATES

INDIVIDUAL
UNITED
STATES
ENTITY

COUNTRY
ENTITY
TYPE

UNITED
STATES

ENTITY
FORMAT
ELEMENTS

ENTITY FORMAT
TRANSLATION
TUPLES CLASSES

SYSTEM OBJECT
TRANSLATION
TUPLES CLASSES

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
396 Chapter 18 Starting a Re-Engineering Project

7 Summary

This is the end of the main part of the book. This should have given you a good under-
standing of what business objects are and how you can use them to help you re-engi-
neer your legacy entity oriented systems. (In the Epilogue we focus on a different topic,
using business objects to re-engineer the business.)

You now appreciate the benefits of re-engineering general, fruitful and thus re-usable
business objects. This final chapter stresses the importance of embedding them prop-
erly in the final system, if you want to harvest these benefits. To those of you about to
use what you have learnt here on a re-engineering project—good luck!

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Epilogue
Using Objects to Re-Engineer the

Business

1 Introduction

2 The accounting paradigm’s debit and credit pattern

3 Accounting’s ledger hierarchy

4 Developing a new object-oriented accounting paradigm

5 Industrialising information

6 21st century information industries

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
398 Epilogue

1 Introduction
The main body of the book, particularly Part Six, deals with how business objects are
starting to revolutionise the way computer systems are built. We saw that business
objects are not only making systems simpler and functionally richer and so cheaper to
build and maintain. This inevitably leads to big changes, such as substantially increased
levels of automation. However, it would be a serious mistake for us to think that busi-
ness objects will only change computer systems. We would be missing their far more
exciting potential for re-engineering the business.

1.1 Missing the wider potential

It often happens that the wider potential of a radical innovation is missed. History is lit-
tered with examples. For instance, Western Union, the telegraph company, turned down
the chance to buy Alexander Graham Bell's 1876 telephone patent for a small sum. It
thought that it was thinking strategically when it offered to stay out of telephones if Bell
stayed out of telegraphy. (Bell also missed the point: he entitled his patent Improve-
ments in Telegraphy.)

More recently, the inventor of the transistor, one of the 20th century's most important
innovations, thought it might be used to make better hearing aids. Even more recently,
when the laser was invented at Bell Labs, its lawyers were initially unwilling even to
apply for a patent on the invention, believing it had no possible relevance to the tele-
phone industry.

In the computing industry, the founder of IBM, Thomas J. Watson, Senior, originally
declared in 1948 that as many as 12 companies might some day have their own com-
puters (a few years later he revised this figure to 50). He anticipated that scientists and
engineers would use them as improved calculating machines—replacements for their
log tables and slide rules. He had no idea that business people and accountants might
be a market.

1.2 Business objects’ wider application

We would be making a similar mistake to Thomas J. Watson, if we expect business
objects to be only used to build better computer systems that automate more of the
business. Like other radical innovations, they have a wider potential than their obvious
application. Surprising as it may seem, I expect that their most significant impact will not
be on computer systems, but on the businesses underlying those systems. They will
play an important part in the industrialisation of business’s information. This will have its
biggest impact on those businesses (or parts of the business) that work with informa-
tion, for example:

• Information industries—such as banking and insurance, and
• Information professions—such as accounting and law.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The accounting paradigm’s debit and credit pattern 399

2 The accounting paradigm’s debit and credit pattern

We can get some idea of how far reaching the effects of this industrialisation will be by
looking at an example of how business objects are going to change an area of the busi-
ness. The spatial, temporal and naming patterns that we
re-engineered in Part Six are too general for this. We use as our example a paradigm
that is central to the management of most businesses—the accounting paradigm. Re-
engineering this is a substantial task; all we do here is outline how a core pattern—the
accounting transaction’s debit and credit pattern—can be re-engineered.

The accounting paradigm is a pertinent example. Its current framework is the account-
ing ledger, whose columns and rows are designed for paper’s two-dimensional surface.
The worked examples in Part Six showed us the extent to which the paper-bound entity
paradigm constrains and distorts patterns. The example of an accounting pattern that
we are going to look at—accounting transaction – has been distorted in a similar way to
fit into the constraints of paper’s two-dimensional surface. The re-engineering will free it
from those constraints.

2.1 From journal transaction to debit and credit movements

Accounting transaction’s debit and credit movement pattern is well over five hundred
years old, but was effectively standardised in the 15th century. This happened when the
invention of printing lead to the publication and wide
distribution of a number of books describing the process of bookkeeping.

The first, and most famous, book was by a Franciscan monk, Fra Luca Pacioli. In 1494
he published a book on mathematics (Summa de Arithmetica, Geometria, Proportioni et
Proportionalita), which contained a treatise on bookkeeping
(Particularis de Computis et Scripturis, which translates as ‘Details of Accounting and
Recording’).

In his treatise, Pacioli described the book-keeping method used by the merchants of
Venice (which was then one of the most powerful city states in Europe); hence, he
called it the Method of Venice. The method was not new; the merchants of Venice had
been using it for centuries. However, once Pacioli’s book was published, bookkeepers
across Europe started to standardise on it. The Method of Venice has proved to be
extremely durable; accountants and bookkeepers still use something similar today.

A central feature of the Method of Venice is double entry bookkeeping. It is called dou-
ble entry because a transaction is, in general, entered twice, firstly into a journal and
secondly into a ledger. It is entered into the journal in the format of an accounting trans-
action. It is then divided into a debit and a credit movement and these are entered into
different parts of the ledger.

This is an example of how resorting and reformatting is done within the constraints of
paper and ink technology. Each ‘book’ contains the same information, but in a different
format and order; each gives us a view of the business. Paper and ink technology sets a

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
400 Epilogue

limit on the number of possible views. For example, taking any more than these two
book-keeping views would involve significant extra effort.

Nowadays, most computing systems automate this manual resorting and re-formatting.
When a transaction is entered, they first store it on a transaction file. Then, they auto-
matically re-format it as a debit and credit movement and ‘post’ it to an account move-
ments file, updating the relevant ledger balances.

The way in which the book-keeping process divides the transaction into a debit and
credit movement for the ledger view, suggests that it sees the transaction as having the
two movements as components—as illustrated schematically in Figure E.1.

Figure E.1:
An accounting
transaction and its
component move-
ments

2.2 The accounting transaction and movements entity formats

We now re-engineer the accounting transaction and its two components. This should
unwind any distortions imposed by pen and paper technology—revealing the objects
that the transaction refers to.

We follow the process used in the worked examples. We look at a listing of the entities
and then their entity formats. The entities are shown in Tables E.1 and E.3, their for-

DEBIT
MOVEMENT

ACCOUNTING
TRANSACTION

CREDIT
MOVEMENT

Transaction Code Transaction Date From Account To Account Amount

#101 25-Apr-94 Joe Bloggs Me £10,000

Table E.1: Partial accounting transactions listing

Entity type Accounting Transaction

Attribute type #1 Transaction code

Attribute type #2 Transaction date

Attribute type #3 From Account

Attribute type #4 To Account

Attribute type #5 Amount

Table E.2: Accounting transaction entity format

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The accounting paradigm’s debit and credit pattern 401

mats in Tables E.2 and E.4. You can see how neatly accounting’s paper-based rows
and columns map into the similarly paper-based entity formats

Figure E.2:
Accounting trans-
action model

Entry
Code

Transaction
Code

Transaction
Date Account Debit/credit

Indicator Amount

#10 #101 25-Apr-94 Joe Bloggs Debit £10,000

#11 #101 25-Apr-94 Me Credit £10,000

Table E.3: Partial accounting movements listing

Entity type Accounting movement

Attribute type #1 Entry code

Attribute type #2 Transaction code

Attribute type #3 Transaction date

Attribute type #4 Account

Attribute type #5 Debit/credit indicator

Attribute type #6 Amount

Table E.4: Accounting movement entity format

DEBIT
MOVEMENTS

CREDIT
MOVEMENTS

TRANSACTION/MOVEMENT
WHOLE-PART TUPLES

CREDIT
MOVEMENT

#11

MOVEMENTS

MOVE-
MENT

TRANSACTION
#101

TRANSACTIONS

TRANS-
ACTION

DEBIT
MOVEMENT

#10

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
402 Epilogue

2.3 Re-engineering the accounting transaction pattern

If we assume that the movements are components of the transaction, we might re-engi-
neer the two entity formats into the model in Figure E.2.

2.4 Re-engineering a transaction event

We begin to realise that Figure E.2 is not accurate, when we ask, from an object point
of view, what the accounting entities refer to. We realise that the model is describing
patterns in the information rather than in what the information refers to—the business.

A big clue that this is happening is the type of sign used for the transactions and move-
ments. They are modelled with physical body signs, suggesting that they are physical
bodies. But in the business neither the transaction nor the movements persist through
time. This makes them events, not physical bodies. (We looked at this type of mis-clas-
sification for accounting movements in Chapter 2, when we considered the data–proc-
ess and things–changes distinctions.)

If we now look at the actual transaction event in the business, we get a very different
pattern from Figures E.1 and E.2. We start by asking what the event happens to. The
answer is the £10,000—it changes owner. We came across this pattern in Chapter 8,
where we looked at the sale of a car (illustrated in Figures 8.1 and 8.2). In that pattern,
the car moved from an ‘owned by garage’ state into an ‘owned by Ms Brown’ state. We
re-use the pattern here on the £10,000. We see it ‘moving’ from an ‘owned by Joe
Bloggs’ state into an ‘owned by me’ state.

The transaction event is revealed as a ‘change’ in the £10,000’s states (described in the
space-time map in Figures E.3). You may have noticed that in this revised view there
are no debit #10 and credit #11 movement objects (illustrated in Figures E.2). Debits
and credits are ways of looking at the transaction event, not objects.

Figure E.3:
£10,000 state
change event
space-time map

ME

JOE BLOGGS

£10,000
OWNED BY
ME STATE

£10,000
OBJECT

£10,000
OWNED BY

JOE BLOGGS STATE

SPACE-
TIME

Owned
By

Owned
By

TRANSACTION
EVENT #101

25th
APRIL
1994

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The accounting paradigm’s debit and credit pattern 403

This space-time map helps us see the event’s causal connections (as explained in
Chapter 8 and illustrated by Figure 8.27). For example, the two parties to the transac-
tion (Joe Bloggs and Me) are, in Aristotelian terms, the efficient causes of the event
(things that make the change happen). In addition:

• The £10,000 is a material cause (what the change happens to), and
• The ‘£10,000 owned by me’ state is a formal cause (what the change

results in).

In addition, the ‘£10,000 owned by Joe Bloggs’ state is a pre-condition All these causal
connections are modelled in the schema in Figure E.4. It also describes the structural
nature of the transaction event’s connection with the 25-Apr-94 day (date) object, which
is whole–part.

Figure E.4:
£10,000 transac-
tion event #101
causes object
schema

This is a very different pattern from that in Figure E.2. Its pattern was moulded by the
constraints of paper and ink technology—particularly its re-sorting and re-formatting
process. It gave a reflection of how transactions are re-formatted into movements, not a
reflection of the business.

2.5 Re-engineering the overall transaction event

The re-engineered transaction event in Figure E.4 only covers half the transaction. Joe
Bloggs paid £10,000 for something, which does not appear in the accounting transac-
tion. This is because accounting transactions only record ‘movements’ of money. They
ignore the non-money element. Once we recognise this non-money element, we can
see that the two elements combine to form an overall transaction.

When we analyse the non-money element of the transaction, we see it has the same
pattern as the money element. Assume that Joe Bloggs bought car #123 with his
£10,000. This car has an owned by me state ending in a movement event followed by
an owned by Joe Bloggs state. The car and £10,000 movement events are the encap-

TRANSACTION
EVENT #101

£10,000
OWNED BY
ME STATE

£10,000
OWNED BY
JOE BLOGGS

STATE

ME

25-APR-94

JOE BLOGGS

£10,000

EFFICIENT
CAUSE

FORMAL
CAUSE

PRE-
CONDITION

EFFICIENT
CAUSE

MATERIAL
CAUSE

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
404 Epilogue

sulated parts of an overall transaction. Once we recognise this, we can see that Joe
Bloggs and I are parties to the overall transaction rather than the individual movement
events. We capture this insight in Figure E.5.

Figure E.5:
Overall transaction
#101’s object
schema

2.6 Generalising to the assets level

In Figure 5 it is clear that the pattern for the money and non-money movement events
are similar. When we generalise this individual transaction pattern to class level, we
construct one class-level pattern that has both money and non-money elements as its
members. The accounting transaction pattern cannot recognise this generalisation
because it is artificially restricted to the money elements only—a result of its origins in
paper technology’s rows and columns.

Money—or currency—is merely one type of asset. It is not even a major type of asset as
the schema of generalised assets in Figure E.6 shows.

Figure E.6:
Generalised assets

The asset super–sub-class hierarchy is rich. The re-engineerings that I have been
involved in have revealed a variety of asset sub-classes. Things such as dividend enti-

£10,000
#456

CAR
#123

JOE BLOGGS

ME

25-APR-94

OVERALL
TRANSACTION

#101

CAR #123
OWNED BY
JOE BLOGGS

STATE

CAR #123
OWNED BY ME

STATE

£10,000 #456
OWNED BY
JOE BLOGGS

STATE

£10,000 #456
OWNED BY ME

STATE

CAR #123
MOVEMENT

EVENT

£10,000 #456
MOVEMENT

EVENT

EQUITIES

EQUITY

BONDS

BOND

PROPERTIES

PROPERTY

COMMODITIES

COMM-
ODITY

POUNDS
STERLING

US
DOLLARS GOLD OIL

SECURITIES

SECURITY

CURRENCIES

CURRENCY

ASSETS

ASSET

FINANCIAL
ASSETS

PHYSICAL
ASSETS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The accounting paradigm’s debit and credit pattern 405

tlement coupons and tax credit vouchers turn out to share in the overall pattern of the
asset family. However, for our current purposes, the key aspect of this asset hierarchy is
that it shows the types of asset our re-engineered transaction can model.

2.7 Generalising transactions to orders/exchanges

There is another direction in which the transaction pattern can be generalised. Transac-
tions are composed of two general patterns—order and exchange. These can be com-
bined in a different way to construct another core pattern—order then exchange.

We now assume that Joe Bloggs called up and ordered his car a few days before he
came in and exchanged his £10,000 for it. The order then exchange would be recorded
as in Table E.5.

If we re-engineer this order, we find it refers to the objects described by the space-time
map in Figure E.7. Notice that the order and exchange elements look as if they are the
transaction illustrated in Figure E.3 divided in half.

Figure E.7:
Order space-time
map

We intuitively understand the order as contracting for the future exchange. This is
reflected in the object schema in Figure E.8. The order event gets its meaning (in
Fregean terms, its sense) from its connecting pattern with its exchange. Notice that now
we have generalised assets; we show the two amounts as belonging to the asset sub-
classes—cars and sterling. Notice also that the underlying pattern has been made
clearer by the omission from the schema of the before and after states of the amounts.

Order Code Ordered By On For Item Type Number Of Items Item Cost Total Cost

#20 Joe Bloggs 22-Apr-94 25-Apr-94 Car 1 £10,000 £10,000

Table E.5: Partial simplified orders then exchanges listing

ME

EXCHANGE
EVENT #20-E

ORDER
EVENT #20-O

JOE BLOGGS

SPACE-
TIME

25th
APRIL
1994

£10,000 #456
OWNED BY
ME STATE

£10,000
OBJECT

£10,000 #456
OWNED BY

JOE BLOGGS STATE

CAR #123
OWNED BY JOE
BLOGGS STATE

CAR #123
OBJECT

CAR #123
OWNED BY
ME STATE

22nd
APRIL
1994

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
406 Epilogue

Figure E.8:
Order object
schema

It is interesting to compare this schema with the schema in Figure E.5. The connecting
patterns that ‘Me’ and Joe Bloggs had with transaction #101 have moved along to order
#20-O. It is as if the standalone transaction in Figure E.5 has been divided into two—
which it indeed has. Order #20-O has separated the parties contracting to the exchange
from exchange #20-E. The individual level order, exchange and transaction patterns
generalise into the class level pattern shown in the simplified object schema in Figure
E.9.

Figure E.9:
General order
object schema

The current accounting paradigm, with its origins in paper and ink technology, cannot
accommodate this general order/exchange pattern’s shape. It typically works around
the problem by treating the order element of an order then exchange as another
accounting transaction, which generates debit and credit movements for the order date.
The accounting paradigm cannot give any firm guidance about what these movements
should be, because they only indirectly refer to the transaction. This has resulted in
equally ‘valid’ but different ways of accounting for the overall transaction. For example,
bank’s treasury operations can choose between a trade (order) and a value (exchange)
date accounting approach.

2.8 Generalising the order pattern

The re-engineering has given us a general order/exchange pattern with the movement
event—the object version of accounting movement—at its core. This order/exchange
pattern is a basic business pattern. It occurs frequently across a range of businesses. In
a re-engineering of an international securities settlement system, we found it in most of
the ‘transactions’, including:

JOE BLOGGS

ME

25-APR-9422-APR-94

£10,000 #456
MOVEMENT

EVENT

CAR #123
MOVEMENT

EVENT
EXCHANGE

#20-E
ORDER
#20-O

£10,000
#456

POUNDS
STERLING

ASSETS

CAR
#123

CARS

PARTY

PARTIES

DATE

DATES
ORDERS/

EXCHANGES

TRANSACTED
ON DATE
TUPLES

PARTY TO
ORDER
TUPLES

TRANSACTION
#101

ORDER
#20-O

EXCHANGE
#20-E

EXCHANGESORDERS

AMOUNT

AMOUNTS

ASSET

ASSETS

MOVEMENT
EVENTS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
2 The accounting paradigm’s debit and credit pattern 407

• Security purchases,
• Security sales,
• Dividend entitlements,
• Bonus and rights entitlements,
• Tax entitlements,
• Stock borrowing and lending agreements,
• Term deposits placed and accepted,
• Foreign exchange deals, and
• Call/notice deals.

We found that the generalisation of these classes followed the same pattern as the
worked examples in Part Six. As higher level classes were constructed, these became
redundant and were purged, compacting the model.

The sub-classes of the general orders/exchanges class fell into a super–sub-class hier-
archy similar to the one shown for deals in Figure E.10. In it, we can see how high level
patterns combine to construct new sub-classes. For example, when the term deals pat-
tern is combined with the currency deals pattern, it gives a term deposits pattern. When
it is combined with the security deals pattern, it gives a repurchase agreements (repos)
pattern.

Figure E.10:
Deals super–sub-
class hierarchy

We also found that at a general level, the order/exchange pattern was a generalisation
of the account pattern. So accounts and its various sub-classes are revealed as sub-
classes in the orders/exchanges super–sub-class hierarchy. Figure E.11 shows part of
the hierarchy and how the higher level accounts classes combine to give lower level
classes. It also shows the wide scope of the accounts pattern. This not only covers the
more traditional call/notice deposit and stock depot accounts, it also covers investment
portfolios and foreign exchange (fx) trading books.

ORDERS/
EXCHANGES

DEALS

CALL/
NOTICE DEALS

CURRENCY
DEALS

STOCKLOANS

SECURITY
DEALS

REPOS

TERM
DEALS

TERM
DEPOSITS

CALL/NOTICE
DEPOSITS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
408 Epilogue

Figure E.11:
Accounts super–
sub-class hierar-
chy

s

There is a certain irony in the fact that the scope of the orders/exchanges pattern
includes the accounts pattern. Accountants involved in the specification of some of the
first generation of international banking systems stretched the account pattern almost to
the breaking point. They tried to fit everything, including the order/exchanges pattern,
into it.

For example, in one system they created new ‘currencies’ to accommodate foreign
exchange deals (where a sum of money in one currency is exchanged for a sum of
money in another). For a US$–Deutsche Mark foreign exchange deal, they would cre-
ate an accounting movement in a US$–Deutsche Mark ‘currency’. This had the advan-
tage of making it easier to fit a foreign exchange deal into the accounting movement
pattern. It was soon found that the disadvantages of distorting the deal to fit the
accounting mould more than outweighed the advantages, and the ‘general’ accounting
pattern was dropped.

However, this re-engineering shows that the accountants’ belief in a general pattern
underlying the deals is correct. Unfortunately for them, it is not their accounting transac-
tion/movement pattern!

2.9 Fitting the business into the current accounting paradigm

The accounting transaction pattern is a partial view (more correctly, two partial, distorted
views) of the money element of the overall transaction pattern. This is typical of a para-
digm based on paper and ink technology. We saw something similar when, in Chapter
16 , we re-engineered the address pattern. It was also a partial—and distorted—view.

Being restricted to two partial views creates problems. It is difficult, for instance, to give
a full rounded picture. Bookkeepers often massage the chart of accounts so that they
can fit more into the two views. For example, they create extra accounts, which do not
reflect anything directly. They justify the particular rules they use for generating these
accounts and their accounting movements by the way they result in final reports that
give ‘a true and fair view’ of the business. Whether the accounting movements actually

ORDERS/
EXCHANGES

ACCOUNTS

MANAGED
ACCOUNTS

CURRENCY
ACCOUNTS

STOCKLOANS

SECURITY
ACCOUNTS

DEPOT
ACCOUNTS

DEPOSIT
ACCOUNTS

INVESTMENT
PORTFOLIOS

FX TRADING
BOOKS

SAFE
CUSTODY

ACCOUNTS

CALL/NOTICE
DEPOSITS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
3 Accounting’s ledger hierarchy 409

reflect the business accurately is often not considered. In this environment, it is not sur-
prising that a number of different accounting practices arise—such as the trade and
value date accounting methods mentioned earlier. Without the criteria of reflecting the
business accurately and directly, it is impossible to arrive at a definitive accounting prac-
tice.

We saw something similar happening in Chapter 3 . There we looked at how the entity
paradigm was simplified to work within paper and ink technology. We saw how this con-
fused its semantics so that it was no longer able to reflect the real world directly. As a
result, people made decisions on whether to use an entity or attribute sign based purely
on which made the information processing more effective. Whether the sign directly
referred to an entity or attribute in the business was not considered.

3 Accounting’s ledger hierarchy

It is not just the underlying accounting movement pattern that is constrained by paper
and ink technology. All the patterns in the current accounting paradigm are. Another
good example is the ledger balance hierarchy. This is a hierarchy of the balances cre-
ated by the debits and credits posted to the ledger book. It is traditionally a structure
similar to that shown in Figure E.12.

Figure E.12:
The traditional
structure of the
ledger hierarchy

This is a tree structure—much like the secondary substance hierarchy (shown in Fig-
ures 4.15 and 4.16). As we discussed in Chapters 4 and 6, a tree structure means that
the hierarchy is constrained (see Figure 6.3). Classification schemes that reflect the
world directly, such as the super–sub-class hierarchy, have a less constrained lattice
structure. This ledger hierarchy needs to be liberated from its tree structure constraints
by re-engineering.

ASSETS LIABILITIES

ASSETS/
LIABILITIES

GENERAL
LEDGER

PROFIT LOSS

PROFIT
AND
LOSS

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
410 Epilogue

4 Developing a new object-oriented accounting paradigm

While companies manage their businesses using paper reports, the current paperbound
accounting paradigm will have a use. However, when information is routinely supplied
electronically, things should change. There will no longer be any technological reason
for supplying managers with partial and distorted views of their business.

To see this, consider a business that is building a computer system based on the gen-
eral orders/exchanges pattern. At a meeting, the requirement to produce standard
accounting reports is raised. The system designer suggests that this is done by taking a
partial view of the orders/exchanges pattern and using it to generate the traditional
accounting entries. He or she explains that these can then be processed in the tradi-
tional way to produce the daily journal, balance sheet and other accounting reports. The
business modeller then asks what business objects this new information reflects. The
answer is that they do not directly reflect anything.

This raises the question—why should managers use this distorted accounting informa-
tion? Furthermore, why should they be restricted to two views? Shouldn’t they be given
a multiplicity of views over undistorted information? They should, and this is why the
current accounting paradigm needs a thorough re-engineering. When this is done, man-
agers will have undistorted information.

However, this re-engineering will be a substantial task. The shift to the general orders/
exchanges pattern described earlier is only a small part of it. We not only have to re-
engineer the foundational accounting transaction/movement pattern—as we have
started to do here; but we also have to re-engineer the patterns built from it, such as the
ledger hierarchy.

In the re-engineered accounting paradigm, complex notions such as assets, liabilities,
profit and loss will be transformed. The new paradigm will use the transformed notions
to give a more accurate, more relevant vision of the business. However, to re-engineer
these requires a thorough knowledge of accounting. We will not find the insights that we
need in the entity formats of computer systems. We need to look at the conceptual pat-
terns of people who understand accounting in depth.

Undoubtedly, when businesses start using the new accounting paradigm there will be
resistance. Though some people will welcome the new paradigm, others will oppose it.
There was a similar reaction when computers were first introduced. Like computers, the
superiority of the new paradigm will ensure that, in the long run, it establishes itself.

5 Industrialising information

The transformation of business paradigms (of which the accounting paradigm is an
example) is going to be a vital part of an overall industrialisation of information. This
industrialisation will need new skills applied to new standards of accuracy. I expect that
a new profession of information engineers will need to be created to do this.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
5 Industrialising information 411

This is a direct parallel with the rise of a ‘physical’ engineering profession in the 18th
century Industrial Revolution. The two revolutions are similar in many ways. In Chapter
, we compared the physical accuracy that drove the Industrial Revolution’s development
of interchangeable parts with the conceptual accuracy that is driving the current devel-
opment of general, re-usable business objects.

5.1 The rise of an engineering profession

Not only was the ‘physical’ engineer instrumental in making the Industrial Revolution, it
can equally be said that the Industrial Revolution created the modern engineering pro-
fession. As the revolution emerged, it demanded new technical skills. Ones that were
not taught to the pre-revolution craftsmen in their craftshops. When it became apparent
that these skills could be codified, it was also realised that the best way to learn them
was a formal technical training. Originally this was provided in military academies, but
eventually established universities followed suit. This formal training set the ‘engineers’
apart, and from this, the engineering profession naturally developed.

We can see a similar pattern emerging in business modelling. Currently business mod-
elling is a craft. Modellers are not given much, if any, formal training. They are certainly
not given any training in information paradigms and how they work. Most of them are
recruited from the ranks of programmers and system analysts. Some are recruited from
the operational parts of the business. For all practical purposes, business modelling can
be considered a craft carried out by craftsmen.

Business objects require information ‘engineers’ with a more professional technical
training. For a start (as this book has shown), they need to be able to see and model
business objects with a high degree of accuracy. For this, they need a good understand-
ing of what they are. This is sufficient for the simple re-engineering of entity formats in
existing systems. But, to take advantage of business objects’ flexibility to handle far
more powerful patterns, information engineers will need to re-engineer the conceptual
patterns of experts in the business. This will involve either training the experts in busi-
ness objects or, more likely, the information engineers developing a deep understanding
of the experts’ conceptual patterns. In other words, the engineers will have to become
business experts.

Business analysts already have to develop a good understanding of the business to do
their job. This is typically learnt in a similar informal way to the pre-revolution engineer–
craftsmen. Information engineers will need a much deeper understanding. Formal tech-
nical training will be the simplest way for them to develop the required in-depth knowl-
edge of the business.

5.2 Where will the information engineers come from?

If information engineering follows the same path as physical engineering, then we can
expect information engineering professions to emerge. An interesting question is—
where will they come from? One obvious source is the current computer system devel-
opers. This will inevitably lead to a segregation of information engineering from the rest

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
412 Epilogue

of system building. I realised quite early on that this is a natural divide. Business model-
ling and computer system design are very different kinds of activities.

When we were developing our re-engineering approach, the team distinguished
between It (big I for information, small t for technology) and iT (small i, big T). Business
modelling was It; computer system design was iT (interestingly, some years ago the
Post Office renamed its IT department iT). If you think about it, the scope of most IT
department’s work does not include all the kinds of information technology used by the
business. Information technology covers more than computers; it includes paper and
ink technology as well as human brains. What most IT departments deal in is computing
technology. So it is by no means a foregone conclusion that IT departments will supply
the professional information engineers of the future.

IT people are not the only candidates for information engineers. Areas of the business
that have traditionally belonged to powerful professions will need the information engi-
neer’s skills. For example, matters relating to the accounting paradigm will have to be
decided by people with information engineering skills. The accounting profession is
unlikely to want ex-computer people to take over this task. To make sure that they do
not ‘miss the boat’, accountants will have to develop the information engineering skills
needed to manage the re-engineering of the accounting paradigm. This is more of an
opportunity than a threat. The re-engineered paradigm will give accountants much more
powerful tools than they currently have, with which to help managers run their busi-
nesses.

Wherever the professional information engineers are drawn from, whether it is the ranks
of accountants, lawyers, systems analysts or business people, the roles that people
play within businesses will change. New responsibilities will arise from the industrialisa-
tion of information. Old responsibilities will change or become irrelevant. Undoubtedly,
when these responsibilities are shared out, information engineers will not only have
some of the new responsibilities, but also take over some currently held by other profes-
sionals.

6 21st century information industries

Re-engineering entity oriented legacy systems into simpler and better systems is inter-
esting and useful work. But it is using business objects to re-engineer the business that
really offers really exciting opportunities for information engineers. It will put them at the
centre of a business and social revolution, where they will be shaping the future. They
will help change the way businesses work, shifting them from the paper-bound informa-
tion processing institutions of the 20th century into the industrialised information indus-
tries of the 21st century.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
BORO

Bibliography

This bibliography points you towards books that cover, in more detail, the main topics
raised in the various parts of the book. These books generally have their own extensive
bibliography that can be used to find additional material if needed.

Preface and Prologue

Only one other book I know of squarely faces up to the semantic problems of business
modelling; that is, Bill Kent's, Data and Reality; Basic Assumptions in Data Processing
Reconsidered (published by North-Holland in 1978, ISBN 0-444-85187-9). In it, he
argues quite forcefully for a reference based paradigm of information and identifies a
number of problems that this kind of paradigm needs to resolve; these are the kind of
problems that this book addresses. He deserves a lot of credit for realising the impor-
tance of these issues in computing so early on.

A book I found useful was Joseph D. Novak and D. Bob Gowin's, Learning how to learn
(published by Cambridge University Press in 1984, ISBN 0-521-31926-9). Novak has
sections in this on a technique he calls concept mapping, which he believes can be
used to map people’s understanding. I found this useful when trying to understand what
business modelling should be doing. A more technical book that looks at the structures
of concepts is John F. Sowa’s, Conceptual Structures (published by the Addison-Wes-
ley in 1984, ISBN 0-201-14472-7).

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
416 Bibliography

Part One—Re-Engineering the Computing EntityParadigm’s Semantics

Thomas S. Kuhn introduced the idea of re-engineering in the sense it is used in this
book, though he called it paradigm shifting. His book, The Structure of Scientific Revolu-
tions (published by University of Chicago Press in 1970, Second Edition, ISBN 0-226-
45803-0) is a useful introduction to what a paradigm is. In particular, it has many illumi-
nating examples from the history of science. A flavour of what re-engineering is in a
business context can be found in Michael Hammer and James Champy’s, Reengineer-
ing the Corporation—A Manifesto for Business Revolution (published by Nicholas Brea-
ley Publishing in 1993, ISBN 1-86373-505-4).

Two other useful books are Howard Margolis’s, Paradigms and Barriers (published by
University of Chicago Press in 1993, ISBN 0-226-50523-5) and Patterns, Thinking and
Cognition (also published by University of Chicago Press in 1987, ISBN 0-226-50528-
6). These give a useful description of both paradigms and patterns and how they link
together.

A good description of the evolution of semantics is in Ian Hacking’s, Why Does Lan-
guage Matter to Philosophy? (published by Cambridge University Press in 1975, ISBN
0-521-09998-6).

Parts Two and Three—Shifting From the Entity Paradigm to the Logical
Paradigm

One of the best ways of researching the shift toward objects is to read the more acces-
sible of the original texts. These include:

• Aristotle’sThe Categories
• John Locke’sAn Essay Concerning Human Understanding
• David Hume’sA Treatise of Human Nature
• Gottlob Frege’sFoundations of Arithmetic
• Charles Peirce’sReasoning and the Logic of Things

Parts Four and Five—Object Semantics and Syntax

You could look at Willard Van Orman Quine’s, Word and Object (published by the M.I.T.
Press in 1964, ISBN 0-262-67001-1) and Roots of Reference (published by Open Court
Publishing Co. in 1974, ISBN 0-87548-123-X); but these can be quite heavy going. An
easier book to read is Mark Heller’s, The ontology of physical objects: Four-dimensional
hunks of matter (published by Cambridge University Press in 1990, ISBN 0-521-38544-
X). It gives a good explanation of the notion of four-dimensional physical objects. David
Lewis’s, Parts of Classes (published by Basil Blackwell in 1991, ISBN 0-631-17656-X)
has a discussion of the relationship between mereology and classes, including a dis-
cussion of the similarity between the sub-class and whole-part patterns generalised.

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
A–C

A
accuracy (and inaccuracy) - - 31, 57–58, 90, 99, 122,

163, 193, 303, 312
benefits of - 17–18
checking - 392
fruitful - 384
functionally richer systems - - - - - - - - - - - - - - - - 17
idea of signs and sameness - - - - - - - - 81–82, 132
identity - 158–159
information paradigm evolution - - - - - - - - 80, 384
interchangeable parts - - - - - - - - - - - - - 18–20, 384
modelling the business - - - - - - - - - - - - - - xvii, 182
physical vs. referential (conceptual) 18–20, 384–

385, 411
reflecting the business xxiii–xxiv, xxvi, xxix, 12, 48,

52, 393
semantic - - - - - - - - - - - - - - - 119, 131, 268, 349–354
trend towards greater - - - - - - - - - - - - - - - -xxix, 18

appearance and reality - 92
application level (of model) - 260–262, 265, 297, 332,

339, 349, 379, 384, 393–394
classes - 261

Aristotelian categories - - - - - - - - - - - - - - - - - - 76, 263
Aristotle - - - - - - - - - - - - - - - xxvi, 16, 34, 40, 50, 57, 65

causes explaining an event - - - 176–177, 242, 403
pattern for motion - 70
syllogism - 200, 204
The Categories - 57, 66

attribute
attribute types - 42
change - 67, 174
close link to substance - - - - - - - - - - - - - - - - - - - 94
essential vs. accidental - - -67–68, 82, 95, 129, 157
individual attributes - 41
natural way of seeing - - - - - - - - - - - - - - - xxv–xxvi
primary level semantics - - - - - - - - - - - - - - - 64–65
range of values - 121, 157
re-engineer - 278, 285

order - - - - - - - - - - - - - - - 320
relational - 82, 243

as states - - - - - - - - - - - - - 168
correlational 57–58, 102–103, 105–107
implicit - - - - - - 278, 280, 286, 345

many to many - - - - - - - - - - 361
re-engineering 57, 96, 100–107, 131, 156,

168, 348
secondary level semantics - - - - - - - - - - - - - - - -66
signed as an entity -48

B
book–keeping - 399–400
Boole, George -88
BORO Centre - xiv, xvii
BORO Methodology -xvii
BORO Program - xiv
business object meta–model - - - - - - - - - - - - - - - -395
business object modelling–training - - - - - - - - - - -385
business object model–technology independent 394
business objects - xxiv, xxvi

accuracy -20
key to -24
missing the wider potential for - - - - - - - - - - - -398
require information engineers - - - - - - - - - - - - -412
vs. concepts -91
vs. system objects -29
wider application -398

business paradigm - xxix
accounting - 399–412
actively revising vs. describing - - - - - - - - - - - - xix
benefits of re-engineering - - - - - - - - - - - - - - - xxix
changing radically -xvii
entity – re-engineering - - - - - - - - - - - - - - - - - - -254
transformation of - 411

business patterns
natural stage to generalise - - - - - - - - - - - - - - -382
salvaging investment in - - - - - - - - - - - - - - xvi, 376

business re-engineering - xix

C
Cantor, Georg - - - - - - - - - - - - - - - - - - 88, 98, 105, 114
cardinality pattern - 244, 246
change

See also four key types of things, changes
happening to things

INDEX

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
D–D INDEX

logical bodies’ problem with - - - - - - - - - - 127–128
needing a firm semantics - - - - - - - - - - - - - - - - 138
not persisting over time - - - - - - - - - - - - - - - - - - - 27
substance paradigm’s explanation - - - - - - - 67–69
transformed into an object - - - - - - - - - - - 130, 169
unchanging substance - - - - - - - - - - - - - - - - - - - 69

chunking - 387–389
class

Cantor’s definition - 98
of four-dimensional objects - - - - - - - - - - - - - - - 151
referring to a collection of extensions - - - - - - - 99
sign for - 189–190
weak pattern for - 114

class of classes
country full names - 286
country’s weekends class - - - - - - - - - - - - - - - - 369
distinct and overlapping pattern objects 224–225
examples -115–117
sign for - 196
unnatural idea - 133

classification
class–member - 120
single vs. multiple - 78
static vs. dynamic - 79

class–member
deducing distant-class–member sign - - - - - - 204
hierarchy - 196
sign for - 191–197
sign for distant- and nearest-class–member - 203
virtual distant-class–member signs - - - - - - - - 205

Coad, Peter -xxiv
compacting

benefit of introducing early - - - - - - - - - - - - - - - 382
classes – pattern for - - - - - - - - - - - - - - - - 248, 347
combined chunks - 388
de-duplication - 352
definition - xvii
encouraging environment - - - - - - - - - - - - - - - - 122
examples - 20–22
fewer, simpler components - - - - - - - - - - - - - - - 378
increases in scope - xxx
metrics for - 265
potential for conceptual economy - - - - - - - - - 122

purging redundant objects - - - - - - - - 297, 326, 407
re-using the secondary hierarchy - - - - - - - - - - -73
simpler and functionally richer - - - - - - - - - - - - -20
with multiple classification - - - - - - - - - - - - 120–122
with patterns of extensions - - - - - - - - - - - 223, 230
with the general naming model - - - - - - - - - - - -355
with tuples -107
with virtual tuples - - - - - - - - - - - - - - - - - - - 201, 205

complexity
building business systems - - - - - - - - - - - - - - - - -14
conceptual patterns - - - - - - - - - - - - - - - - - 370, 379
cost of automating -302
fruitful patterns -383
not inherent -379
re-engineering - - xviii, xxx, 20, 302–303, 379, 383
traditional development methodologies - - - - - -xv

computer technology xxvi–xxvii, 34, 45, 186–187, 412
conceptual economy – increased potential for - -122
conceptual patterns - - - - - - - - - - - - - - - 301–303, 308
consciousness – time-based - - - - - - - - 179–180, 215
constructive nature of modelling - - - - - - - - - - - - -196
Cook, Steve - xxiv
Copernicus, Nicolaus -144
correlational attribute, See attributes, relational,

correlational
current tuple - 180, 316

sign for -215

D
Daniels, John - xxiv
data–process distinction - - - - - 27–29, 34, 36, 90, 216
derived object – sign for - - - - - - - - - - - - 227, 235, 249
Descartes, René - 94–95
distinct and overlapping pattern - -223–224, 230–231
distinct pattern - 221, 228

use caution signing -231
distorted

accounting pattern - - - - - - - - - - - - - - - - - - 400, 409
address pattern - 345, 352
by a relational attribute - - - - - - - - - - - - - - - - - - -58
by a tree structure -199

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
E–E INDEX

by paper and ink technology - - - - - - - - - - - - - 356
by the entity paradigm xxvi, 90, 268, 286, 290, 300,

357, 399
deal pattern - 409
manager’s view of the business - - - - - - - - - - - 410
process’s view of the business - - - - - - - - - - - - 257

documentation – ephemeral - - - - - - - - - - - - - - - - 391
Dummett, Michael - 90
dynaclass - 179
dynamic classification - - - - - - - - - - - - - - - 72, 79, 120

See also classification, static vs. dynamic
logical changes - 129–130
mimicked by attributes - - - - - - - - - - - - - - - - - - 121
re-engineer into an event - - - - - - - - - - - - 169, 176

dynamic object - 180, 186
implementing - 180
sign for - 214–215

E
economies of scope - 386
Edwards, John - xi
efficient cause, See Aristotle, causes explaining an

event
egocentricity – general trend away from - - - - - - 144
Einstein, Albert - - - - - - - - - - - - - 17, 143–144, 148, 173
Empedocles - 80–81
encapsulation - 173–175
entity

attributes belong to - 41
business -xxix
corresponds to substance - - - - - - - - - - - - - - - - - 50
individual entities belong to entity types - - - - - 41
natural type level - 54
re-engineering order rules - - - - - - - 258, 271, 320
relational - 59, 361

entity life history diagram - - - - - - - - - - - - - - - - - - - 242
entity paradigm

based upon paper and ink technology - - xxvii, 53
entity–based computer systems - - - - - - - 254–255
framework - 43
fundamental particles - - - - - - - - - - - - - - - - - 40–42

general entity–attribute pattern - - - - - - - - - - 43–44
ignoring semantic problems - - - - - - - - - - - - - - -61
links to the file–record paradigm - - - - - - - - - 45–49
problem with -25
re-engineering - 254, 256
re-use -43
simplifying relationships - - - - - - - - - - - - - - - - 56–58
simplifying semantics - - - - - - - - - - - - - - - - - - 54–56
types restricted to a single level - - - - - - - - -51, 54
way of seeing - xxvi

entity–attribute–relation model - - - - - - - - - - - - - - -60
event

Aristotelian causes -177
as a physical object -169
as three-dimensional objects - - - - - - - - - - - - -169
complex/encapsulated - - - - - - - 169, 173–177, 181
distinct from body -170
encapsulation -174
object paradigm’s shift to - - - - - - - - - - - - - - - - -169

explicit
business model xxix, 200, 260, 303, 309, 339, 355,

384
class–member tuple -194
data -257
implicit entity model - xvi
implicit pattern - - - - - - - - - - 114, 117, 349–354, 361
mapping sense explicitly - - - - - - - - - - - - - - - - - -90
pattern for change - - - - - - - - - - - - 67, 72, 131, 181
relationship link - - - - - - - - - - - - - - - - - - - 58, 60, 103
re-usable patterns - xxix
sense patterns -264
sign for patterns -186
states -157
strong reference principle - - - - - - - - - - - - - 91, 351
time ordering patterns - - - - - - - - - - - - - - - - - - -178

extension
benefits of -94
collection vs. fusion of - - - - -99–100, 173–174, 227
Descartes -94
disconnected -173
four-dimensional 143–144, 157, 163, 216, 272, 276,

279, 312, 346, 373
instantaneous -140

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
F–G INDEX

of bodies - 95
of classes - 98, 101, 152
of dynamic classifications - - - - - - - - - - - - - - - -130
of events - 170, 173–175
of states - 158, 165
of stuff -150
of tuples - 104, 107, 153
of wholes and parts -129
patterns for the connections between - - - 154, 220
same extension - 97, 100, 140–141, 147–148, 152,

160, 238
shift to timeless objects - - - - - - - - - - - - - - 151–153
shifting from substance to - - - - - - 91–96, 128, 149
three-dimensional -143

F
file–record paradigm -45–47
final cause, See Aristotle, causes explaining an

event
flexibility - - - - - - - - -28, 77, 83, 122, 165, 186, 300, 412
Fluidity - xiv
formal cause, See Aristotle, causes explaining an

event
Forty Two Objects Ltd - xiv
forward engineering - - - - - - - - - - - - - - - - - - - xvi–xvii
four key types of thing - - - - - - - - - - - - 31, 40, 61, 133

changes happening to things - - 34, 127–131, 138
general types of thing - - - - - - - - - - - - - - 32–33, 130
particular things - - - - - - - - - - - 31–32, 40, 130, 153
relationships between things - - - - - - - - 33, 56, 131

framework level (of model) - - -260, 262–265, 328, 355
example model -270
meta–model -260

Frege, Gottlob - - - - - - - - - - - - - - 88, 98, 129, 171, 264
fruitful patterns -143

beyond a project -383
chunking -389
from complex entity formats - - - - - - - - - - - - - -383
general lexicon -263
ignoring - 10
more accurate -384

prioritise construction of - - - - - - - - - - 376–377, 383
re-use - 74, 303

functional decomposition - - - - - - - - - - - - - - -380–381
fundamental particle(s) - - - - - - - - - - - - - - - - - - 12–13

entity paradigm - - - - - - - - - - - - - -11, 40–42, 46, 54
information particle - - - - - - - - - - - - - - - - - - - 11–14
logical paradigm - 88, 108
object paradigm -156, 169
physical particle - 11
re-engineering - - - - - - - - - - - 4, 10–14, 22, 101, 109
substance paradigm - - - - - - - - - - - - - - - 50, 74, 88
vs. complex business objects - - - - - - - - - - - - - 13

fusion -147, 369
collection vs. fusion of - - - - - - - - - - - - - - - -99–100
creating components - - - - - - - - - - - - - - - -156, 163
encapsulated events - - - - - - - - - - - - - 173–175, 181
of extensions - 99
of stuff - 151
sign for pattern -227, 235

G
general lexicon - - - - - - - - - - - - - - - - 74, 262–264, 355

Aristotelian categories - - - - - - - - - - - - - - - - - - 263
border - 264
example - 270

general types of thing, See four key types of thing,
general types of thing

generalisation
compacting - 264
friendly environment - - - - - - - - - - - - - 122, 376, 380
introduce during business modelling - - - - - - - 381
less costly components - - - - - - - - - - - - - - - - - 378
metrics for - 265
potential for - - - - - - - - - - - - - - - 18–20, 72, 125, 383
produces compacting - - - - - - - - - - - - - - - -294, 378
re-use - 29

generalising
re-used patterns - 294
substance and attribute patterns - - - - - - - - - - - 72

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
H–M INDEX

H
happens–at (whole–part) tuple - - - - - - - - - - - - - - 172
happens–to (whole–part) tuple - - - - - - - - - - - - - - 171
Heraclitus of Ephesus - 68
here event class - 215
Huichol Indians - - - - - - - - - - - - - -81–82, 132, 154, 384
Hume, David - 92–94, 127

I
identity

continuity - - - - - - 139, 143, 146, 148, 150, 159, 346
more accurate way of seeing - - - - - - - - - - - - - 154
of a class over time - 151
of a tuple over time - 153
of disconnected physical bodies - - - - - - - - - - 148
of logical bodies persisting through change 127–

128
of physical bodies - - - - - - - - - - - - - - - - - - 139, 145
problem with whole–part pattern - - - - - - - - - - 129

increases in scope - xxx, 125
opportunities for generalisation - - - - - - - 385–386

individual object – sign for - - - - - - - - - - - - - - 187, 189
Industrial Revolution - - - - - - - - - - - - - - - - - - - 18, 411
industrialisation of information - - - -20, 398, 411–413
information engineering profession - - - - - - - - - - 411
information paradigm - - - - - - - - - - -11, 31–34, 88, 411

evolution - 384
major elements of - 24, 35
particles - 11, 14
separate evolution of semantics - - - - - - - - - - - - 35
vs. business paradigm level - - - - - - - - xxviii–xxix

inheritance - 197, 203, 209
cardinality patterns - 248
distinct and overlapping patterns - - - - - - 222, 229
logical class -113–114
partitioning patterns - 226
secondary hierarchy - 72
single vs. multiple - - - - - - - - - - - - - - - - - - - 77, 122

interchangeable parts - - - - - - - - - - - -18–19, 384, 411
intersection pattern - - - - - - - - - - - - - - - - - - - 226, 234

J
Jacobson, Ivar -xxiv–xxv

K
Kent, William - xii
Kepler, Johannes -21
Kuhn,Thomas K. -416

L
Laboratory for Applied Ontology - - - - - - - - - - - - - xiv
lattice structure, See structure – lattice and tree
Leibnitz, Gottfried -133
Lewis, David -149
Linnaeus (Carl von Linné) - - - - - - - - - - - - - - - - - - -76
Locke, John - 92–93
logical dependency – sign for - - - - - - - - - - - 227, 235
logical paradigm

changes - 129–130
class–member pattern - - - - - - - - - - - 114–122, 193
encouraging compacting - - - - - - - - - - - - - - - - -122
fundamental particles -88
halfway house -36
new way of seeing - - - - - - - - - - - - - - 131–133, 384
origins -88
problem with changes - - - - - - - - - - - - - - - 127–128
sense element of - 112
shift to extension - 91–95
simplifying the substance framework - - - 107–108
strong reference principle - - - - - - - - - - - - - - - - -97
super–sub-class pattern - - - - - -112–114, 122, 197

M
managing large re-engineering projects - - - 385–392
material cause, See Aristotle, causes explaining an

event
meaning – Frege’s analysis - - - - - - - - - - - - - - - 89–91
membership information – modelling lack of 193–196

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
N–P INDEX

mereology - 129, 159
See also whole-part patterns

migration of business patterns - - - - - - - - - - - 393–395
model levels (framework, etc.) - - - - - - - - - - - - - - -260
(modelling)2 model - 216–217
multiple classification, See classification, single vs.

multiple

N
naming patterns – a general model for - - - - - - - -355
new way of seeing - - - - - - - - - - - - - - - - - - 7, 286, 377

bodies -153
business objects - xviii–xix
changes -181
logical paradigm - - - - - - - - - - - - - - - - 122, 131–133
object paradigm - - - - - - - - - - - - - - - - 138, 143, 163

Novak, Joseph -415
now event class -215

O
object paradigm

characteristics of -148
enabling compact models - - - - - - - - - - - - - - - -xxx
generalisation friendly environment - - - - 122, 126
origins of -35, 143
preliminary definition of - - - - - - - - - - - - - - - - - xviii

object syntax - - 182, 186, 191, 236, 239, 242, 248, 373
occupied class place

as an object -246
constraints on tuple places - - - - - - - - - - - - - - -208
sign for -207

Odell, James - xi
ontic commitment - 12
ontology - 12
O-O programming language - - - - - - - - xx, xxviii, 10

group attribute - 61
halfway house - xxviii, 175
single inheritance - 77
static classification - 80

operational level (of model) - - - - - 260–262, 265, 273

operational level (vs. understanding level)
See also understanding vs. operational

operational re-use vs. generalisation - - - - - - - - - - 29
oral culture -81–82, 154
overall stuff objects - 151
overlapping pattern -221, 228

confirming - 231

P
Pacioli, Fra Luca - 399
paper and ink technology 35, 131, 201, 279, 400, 412

accounting paradigm - - - - - - - - - - - - 399–407, 409
address format - 356
computers - xxvii
entity paradigm - - - - - - - - xxvi, 34, 40, 53, 57, 409
object paradigm - 35, 186
paper forms - xxvii
paper’s rows and columns -xxvi–xxvii, 45, 53, 107

paradigm
as a holistic framework - 7
business and information paradigm level - xxviii–

xxix
paradigm shifts

leading to radically different questions - - - - - - - 6
particular things, See four key types of thing,

particular things
partitioning patterns - - - - - - - - - - - - 225–226, 232–234
Pasteur, Louis - 9
pattern

aspects of - 356
Peirce, Charles Sanders - 88
physical bodies

as four-dimensional objects - - - - - - - - - - - - - - 137
disconnected - 150

place (Aristotelian category) - - - - - - - - - - - - - 75, 272
benefits - 143
replaced by Descartes’ extension - - - - - - - - - - 94
two things in the same - - - - - - - - - - - 140, 142, 148

Plato - 80
popular (general) consciousness - - - - - -80, 153, 181
Porphyry - 76

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
Q–S INDEX

power class - 307
primary attribute

problems in the logical paradigm - - - - - - - - - - - 96
transformed into a logical class - - - - - - - - 98, 102

primary substance
as underlying matter - - - - - - - - - - - - - - - - - - 64–65
re-engineer - 95–100

Ptech - xi

Q
Quine, Willard van Orman - xi, 99–100, 143–144, 149,

416

R
Ray, John - 76
redundant patterns - - - - - 210, 310, 315–316, 334, 384

classifying - - - - - - - - - - 296–297, 326–328, 331, 336
example - 347
purging - 297
recording - 250
sign for - 250

re-engineer
attributes

relational - - - - - 278, 282, 287, 289
benefits - xvii, xxix, 17–22
complex patterns - 20
conceptual patterns - xvi
data and process - 257
existing systems - xv
framework - 270
paradigms - 4
rules for ordering elements - - - - - - - - - - - 258, 271
systematic approach - - - - - - - - - - - - 256, 259, 270
the same object twice - - - - - - - - - - - - - - - 352–353
things in the business - 36
underlying business - xv

reference - 188, 279, 373
changing - 141
diagram - - - - - - - - - - - - - - - - - - - 197, 202, 276–277
need to determine - 90

of classes -152
one name referring to two objects - - - - - - - - -354
problem with relational attribute - - - - - - - - - - -102
unchanging -149
weak -100

relational databases -107
relationships

See also four key types of thing, relationships
between things

between more than two objects - - - - - - - - - - -105
many-to-many - 58, 106
problem with attributes - - - - - - - - - - - - - - - - - -103

re-usable–business objects - - - - - - -xvii, xxi, 17, 411
re-use

accuracy and interchangeable parts - - - - - - - -18
Aristotelian categories -74
complex patterns -302
country/region patterns - - -294–297, 320, 322, 339
explicitness and accuracy - - - - - - - - - - - - - - - xxix
general lexicon -263
high levels of - xvi
metrics for -265
operational vs. understanding level - - - - - - - - -29
patterns 125–126, 209, 302–303, 344, 354, 376–377,

384
potential for - xviii, xxi, 20, 29, 64, 72, 83, 312, 315
whole–part patterns in space-time - - - - - - - - -149
within the secondary hierarchy - - - - - - - - - - 72–73
working down entity framework - - - - - - - - - - - -43

REV-ENG method - - - - - - - - - - - - 253–256, 276, 297
stages - 257–259

reverse engineer -256
revisionary vs. descriptive approach - - - - - - - - - - xix
Russell, Bertrand -71

S
sameness, See identity
secondary attribute

hierarchy - 51–52, 56
independent -52, 56, 74
inheritance -72

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
T–T INDEX

making dependent - 56
re-engineering -101

secondary substance
hierarchy - - - - - - - - - - 51, 56, 72–74, 113, 232, 410
re-engineer -100

semantic re-engineering route - - - - - - - - - - - - - - - 35
sense and reference - - - - - - - - - - - - - 89–91, 171, 264
signs as objects – modelling the model - - - 216–217
single classification, See classification, single vs.

multiple
Sowa, John F. - xii
space-time - - - - - - - - - - - - - - - -146, 148, 172–173, 181

amalgamation of space and time - 149, 154, 167,
373

connected in -150
Einstein’s notion of -143
map - 145, 170–172
temporal slice

example - - - - - - - - - - - - - 372
time objects - 362–365

state tuples – tuples with state object places - - -168
states

as physical body objects - - - - - - - - - - - - - - - - -156
components as fusions of - - - - - - - - - - - - - - - -163
consequences of timelessness - - - - - - - - 163–165
contiguous -167
distinct -161
hierarchy - - - - - - - - - - - - - - - - - - 159–162, 236–237
identity -158
life history - 239, 241
objects that are states of themselves - - - - - - -164
overlapping - 161, 238
re-engineer from dynamic classifications - - - -169
substance paradigm’s view - - - - - - - - - - - - - - -157
time ordered connections - - - - - - - - - - - - - - - -165
time ordered patterns -239

static classification, See classification, static vs.
dynamic

stored information – current way of seeing - - - - - 61
strong reference principle - - - - - - - - - - - - 91, 133, 231

and extention - - - - - - - - - - - - - - - - 97, 99–100, 122
applying - - - - - - - - - - - - - - - - - - - 150, 262, 351–352
breaches of - - - - - - - - - - - - - - - - 103, 130, 148, 352

mapping objects directly - - - - - - - - - - - - - - - - - 118
strong sense of object - 127
structure – lattice and tree - - - - - - - - - - - 30, 335–336

accounting ledger - 410
Aristotlian categories - - - - - - - - - - - - - - - - - 75–76
functional decomposition - - - - - - - - - - - - - - - - 381
life history - 242
logical paradigm - - - - - - - - - - - - - - - - 114, 120, 122
object paradigm - 162
O-O programming language - - - - - - - - - - - - - - 77
super–sub-class hierarchy - - - - - - - - - - - - - - - 199

sub-part - 220
sign for - 211

substance paradigm
David Hume’s scepticism - - - - - - - - - - - - - - - - - 93
John Locke’s qualms - 92
relationships - 56–58
simplified into entity paradigm - - - - - - - - - - - - - 50
superior semantics - 52

substance semantics
primary level particles - 64
secondary level particles - - - - - - - - - - - - - - - - - 66

super–sub-class - - - - - - - - - - - - - - 112–113, 159, 306
confused with class–member pattern - - -132, 205
deducing descendant–sub-class signs - - - - - 200
inheritance - 199
new way of seeing - 384
sign for a tuple -197–198
sign for a tuples class - - - - - - - - - - - - - - - - - - - 206
sign for child– and descendant–sub-class - 199–

200
virtual descendant–sub-class signs - - - - - - - 201

super–sub-class hierarchy - - 112, 162, 200–203, 326,
347, 370, 405, 407–410

class membership inheritance - - - - - - - - - - - - 203
natural structure - 199
non-circular structure - - - - - - - - - - - - - - - - - - - 202

T
tables paradigm - 46
temporal–whole–part - - - - - - - 236–237, 242, 315, 369

sign for - 237

© Copyri ht Chris Partridge

g
chris. artridge@BOROCentre.com

p
U–Z INDEX

testing conceptual correctness - - - - - - - - - - - - - - 122
thing and stuff patterns - - - - - - - - - - - - - - - - 149–151
things in the business - 50

See also four key types of thing
business model reflecting - - - - - - - - - - - - - - 12–13
forcusing the re-engineering on - - - - - - - - - - - - 24
identifying similar - 30
ignoring - 27–29
problems identifying - - - - - - - - - - - - - - - - - - 25–26
re-engineering object semantics for - - - - - - - - - 35

thought experiment - - -14–17, 64, 115, 130, 139–142,
145–148, 158

Descartes’ - 95
Einstein’s - 17
Hume’s - 128
Zeno’s - 71

Time - 243
time dimension– translated into a spatial dimension

145
time objects - 172–173

See also space-time, time objects
time ordering - - - - - - - - - - - - - - - - - 239–240, 242–243
timelessness 148–149, 152, 154, 163–165, 179–181, 214
time-line -147, 164, 170, 181
time-slice - - - - - -147, 158, 164, 170–172, 179, 181, 215
Tree of Porphyry, See Porphyry
tree structure, See structure – lattice and tree
tuple

of four-dimensional objects - - - - - - - - - - - - - - - 153
sign for - 206–209

tuple place - 207
tuples class - 207–208

cardinality patterns for - - - - - - - - - - - - - - - 243–248
super–sub-class hierarchy - - - - - - - - - - - - - - - 209

U
understanding

as meaning - 88
vs. operational level - - - - - - - xxvi, 29–30, 40, 138

V
validation system - - - - - - - - - - - - - 122, 309, 392, 395
Venn diagram - 59, 160–161
Venn, John -88

W
webby pattern - - - - - - - - - - - - - - - - 203, 308, 355, 377
well–defined scope -377
Whitney, Eli - 18–20
Whitworth, Joseph - 19–20
whole–part

child– and descendant–part - - - - - - - - - - - - - -212
deducing descendant–part signs - - - - - - - - - -213
hierarchy -212
signs for -210

whole–part pattern - - - - - 149, 171–173, 224, 310, 350
and causes -178
and identity -129
and overlapping pattern - - - - - - - - - - - - - - - - - -221
and states - 158–159
and super–sub-class pattern - - - - - - 197, 210–211
conceptually more accurate - - - - - - 131, 351–352
extending spatial to spatio-temporal patterns 147,

149
for stuff -151
happens–at pattern -172
implicit -350

Y
Yourdin, Ed - xxiv

Z
Zeno of Elea - 71, 130, 175

