Coordinate Systems

Level Ascending Ontological Options

A major challenge faced in the deployment of collaborating unmanned vehicles is enabling the semantic interoperability of sensor data. One aspect of this, where there is significant opportunity for improvement, is characterizing the coordinate systems for sensed position data. We are involved in a proof of concept project that addresses this challenge through a foundational conceptual model using a constructional approach based upon the BORO Foundational Ontology. The model reveals the characteristics as sets of options for configuring the coordinate systems. This paper examines how these options involve, ontologically, ascending levels. It identifies two types of levels, the well-known type levels and the less wellknown tuple/relation levels.

Implicit Requirements for Ontological Multi-Level Types in the UNICLASS Classification

In the multi-level type modeling community, claims that most enterprise application systems use ontologically multi-level types are ubiquitous. To be able to empirically verify this claim one needs to be able to expose the (often underlying) ontological structure and show that it does, indeed, make a commitment to multi-level types. We have not been able to find any published data showing this being done. From a top-level ontology requirements perspective, checking this multi-level type claim is worthwhile. If the datasets for which the top-level ontology is required are ontologically committed to multi-level types, then this is a requirement for the top-level ontology. In this paper, we both present some empirical evidence that this ubiquitous claim is correct as well as describing the process we used to expose the underlying ontological commitments and examine them. We describe how we use the bCLEARer process to analyse the UNICLASS classifications making their implicit ontological commitments explicit. We show how this reveals the requirements for two general ontological commitments; higher-order types and first-class relations. This establishes a requirement for a top-level ontology that includes the UNICLASS classification to be able to accommodate these requirements. From a multi-level type perspective, we have established that the bCLEARer entification process can identify underlying ontological commitments to multi-level type that do not exist in the surface linguistic structure. So, we have a process that we can reuse on other datasets and application systems to help empirically verify the claim that ontological multi-level types are ubiquitous.

Thoroughly Modern Accounting:

Shifting to a De Re Conceptual Pattern for Debits and Credits

Double entry bookkeeping lies at the core of modern accounting. It is shaped by a fundamental conceptual pattern; a design decision that was popularised by Pacioli some 500 years ago and subsequently institutionalised into accounting practice and systems. Debits and credits are core components of this conceptual pattern. This paper suggests that a different conceptual pattern, one that does not have debits and credits as its components, may be more suited to some modern accounting information systems. It makes the case by looking at two conceptual design choices that permeate the Pacioli pattern; de se and directional terms - leading to a de se directional conceptual pattern. It suggests alternative design choices - de re and non-directional terms, leading to a de re non-directional conceptual pattern - have some advantages in modern complex, computer-based, business environments.

The Fantastic Combinations and Permutations of Coordinate Systems' Characterising Options

The Game of Constructional Ontology

The multi-level modelling community’s raison d'être is its vision of the ubiquity and importance of multi-level-types: the ascending levelled hierarchy of types in conceptual models; starting with types of things, then types of these types, then types of these types of types, and so on. The community both promotes this vision and investigates this hierarchy, looking at how it can be accommodated into existing frameworks. In this paper, we consider a specific domain, coordinate systems’ characterising options. While we recognise that, unsurprisingly, this domain contains a ubiquity of multi-level-types, our interest is in investigating a new and different approach to understanding them. For this we needed to develop a new framework. We devise one focussing on this case, based upon scaling down to simple compositional algorithms (called constructors) to form a new, radically simpler foundation. From the simple operations of these constructors emerges the scaled up multi-level structures of the domain. We show how the simple operations of simple constructors give rise to compositional connections that shape – and so explain – different complex hierarchies and levels, including the familiar multi-level-types and relatively unknown multi-level-tuples. The framework crystallises these connections as metaphysical grounding relations. We look at how simple differences in the shape and operation of constructors give rise to different varieties of these hierarchies and levels – and the impact this has. We also look at how the constructional approach reveals the differences between foundational constructors and derived constructors built from the foundational constructors – and show that conceptual modeling’s generalisation relations are secondary and dependent upon the more foundational instantiation relations. Based upon this, we assemble a constructional foundational ontology using the BORO Foundational Ontology as our starting point. We then use this to reveal and explain the formal levels and hierarchies that underlie the options for characterising coordinate systems.